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ABSTRACT

A researcher can use a tightly parameterized structural model to obtain internally consistent estimates 
of a wide range of economically interesting targets. We ask how reliable these estimates are when 
the researcher’s model may be misspecified. We focus on the case of multivariate, potentially nonlinear 
models where the causal variable of interest is endogenous. Reliable estimates require that the researcher’s 
model is flexible enough to describe the effects of the endogenous variable approximately correctly. 
Reliable estimates do not require that the researcher has correctly specified the role of the exogenous 
controls in the model. However, if the role of the controls is misspecified, reliable estimates require 
a property we call strong exclusion. Strong exclusion depends on having sufficiently many instruments 
that are unrelated to the controls. We discuss how practitioners can achieve strong exclusion and illustrate 
our findings with an application to a differentiated goods model of demand for beer.
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1 Introduction

Answers to economic questions often turn on the causal effects of endogenous variables on out-

comes of interest. Researchers commonly answer these questions by specifying a tightly param-

eterized structural model, and then estimating their model using instrumental variables to address

endogeneity. Examples of this approach include studies of demand (Berry, Levinsohn, and Pakes

1995), production (Ackerberg, Caves, and Frazer 2015), residential choice (Diamond 2016), hu-

man capital accumulation (Attanasio et al. 2020), banking (Egan, Lewellen, and Sunderam 2022),

household consumption (Li 2021), and trade (Adao, Costinot, and Donaldson 2017).

A strength of this approach is that a single estimated structural model can often yield answers to

a wide range of counterfactual questions. The approach can therefore be applied in settings where

questions of interest are dictated by the needs of decision-makers and cannot be answered directly

from historical experience.1 Precisely because such questions are important, and a structural model

is an approximation, it is valuable to know how the researcher’s conclusions are affected by the

possibility of misspecification.2

We study two questions. First, theoretically, under what forms of misspecification can struc-

tural estimates remain reliable? Second, practically, how can a researcher concerned with misspec-

ification select an estimator to improve reliability? We focus on the situation where the researcher

wishes to use a single estimated model to answer a potentially rich set of counterfactual questions,

and we allow for both the outcome and the endogenous variable to be multivariate. These decisions

connect our analysis to a large swathe of modern structural estimation.

To answer our two questions, we nest the researcher’s parameterized structural model in a

flexible potential outcomes model in the spirit of Imbens and Angrist (1994), Angrist, Imbens, and

Rubin (1996), and others. The researcher is interested in the effect of some variable D (e.g., prices)

on some outcome Y (e.g., market shares), where D may be endogenous to unobserved factors

(e.g., preferences) affecting Y , and both D and Y may be vector-valued (e.g., there are multiple

1Nevo and Whinston (2010, p. 71) explain, “The change we are interested in may literally never have occurred
before...so the previously observed effects may not provide a good prediction of the current one. Structural analysis
gives us a way to relate observations of responses to changes in the past to predict the responses to different changes
in the future.”

2As Pakes (2003, p. 195) explains, “Of course the ’real world’ is complex and we will never get the model exactly
’right’. That, however, is also a rather naive goal. The question is not whether a paper has gotten it ’right’ but rather
whether the paper has provided a more meaningful approximation than the next best alternative. Firms are going to
use data to help make decisions, agencies are going to use it to help determine policies, and academics are going to
use it to interpret market outcomes, whether we like it or not. The only question is whether we can improve on how
this is being done.”
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products). The researcher’s model specifies Y as a function of D and some included covariates or

controls X (e.g., product characteristics), with the causal relationships governed by a parameter

vector θ. The researcher may also have access to some excluded exogenous variables Z (e.g., cost

shifters) that causally affect D but not Y . The nesting model respects the researcher’s assumptions

about which variables causally affect the outcome (see Figure 1) and which are exogenous, but may

disagree with the researcher’s specified functional form for the outcome. Our analysis therefore

sets aside important questions about the validity of exclusion and exogeneity restrictions that have

been the focus of prior work, and focuses instead on model misspecification.

To answer our first theoretical question, we consider an oracle estimator of the researcher’s

model. Like the researcher, the oracle must select an estimate θ̂ of the unknown parameter. Unlike

the researcher, the oracle knows the true data-generating process (DGP); the oracle can therefore

select at least as good an estimate as any feasible procedure. To align with common empirical

practice, we require that the oracle uses its preferred estimate θ̂ of the researcher’s model to answer

any causal or counterfactual question that is asked of it: the oracle does not change its estimate to

suit the question.

We suppose that the economic targets take the form of causal summaries, which are generalized

weighted averages of partial derivatives of the outcome with respect to the endogenous variable.

The answers to many economic questions of interest (e.g., average own- or cross-price elasticities,

or the level of demand or change in surplus at a counterfactual price) are causal summaries, and

many of our results extend directly to the more general case of targets (e.g., the equilibrium price

effects of a merger) that can be written as smooth functions of the potential outcomes.

We ask when the oracle is guaranteed to be able to estimate all causal summaries approximately

correctly. Such a guarantee naturally requires a restriction on misspecification, but prior work

has not shown the form this restriction takes. We find that the necessary restriction is that the

researcher’s model be flexible enough to get the causal effects of the endogenous variable D on

the outcome Y approximately right for some value of the unknown parameter. In this case, we say

the researcher’s model satisfies approximately causally correct specification, and we show how to

adapt this characterization to situations in which the researcher is interested only in a subset of

causal summaries.

We show that while approximately causally correct specification is restrictive in many respects,

it is quite permissive in others. In particular, approximately causally correct specification allows

the researcher to have badly misspecified the way the control variables affect the outcome.

3



Figure 1: Causal graph of observed variables in the researcher’s model
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Note: Appendix Figure 1 presents a causal graph that includes unobserved variables.

The answer to our theoretical question tells us how to pose our practical question. The best the

oracle can hope for is to estimate causal summaries approximately correctly under approximately

causally correct specification. We call this property approximate causal consistency and ask what

feasible estimators achieve it. Motivated by the common use of Generalized Method of Moments

(GMM, Hansen 1982), we focus on a class of estimators that ensure that the unobservables implied

by the model are orthogonal to a weighted combination of instruments. Consistent with common

practice, the instruments may be functions of the included control variables X or the excluded

variables Z.

Under regularity conditions, we find that the researcher’s estimator is approximately causally

consistent if and only if it satisfies a condition that we call strong exclusion. Strong exclusion

requires that sufficiently many of the instruments be functions of excluded variables, and that these

functions are mean-independent of the controls. Strong exclusion also typically requires that not

too many of the instruments are functions only of the controls. Intuitively, strong exclusion limits

the impact that misspecification of the controls can have on the researcher’s conclusions about the

causal effects of the endogenous variable. When strong exclusion fails, such misspecification can

lead the researcher’s estimator to perform poorly. We show that strong exclusion is important even

if the researcher is willing to focus on a fairly narrow class of causal summaries. We provide a

recipe to enforce strong exclusion provided the researcher has access to excluded variables.

We illustrate our findings in an application to differentiated goods demand estimation. We

model a researcher who aims to learn the average own-price elasticity and does not know the DGP.

We discipline the DGP by calibrating it to Miller and Weinberg’s (2017) estimated model of the

demand for beer. When the researcher’s model is approximately causally correct, only estima-

tors satisfying strong exclusion perform well across situations in which the role of the controls is

misspecified.
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Our theoretical analysis assumes that the researcher’s estimator converges reliably in popula-

tion to a well-defined estimand, and thus sets aside important issues of instrument strength and

efficiency that have been the focus of prior work.3 In practice, because enforcing strong exclusion

requires using sufficiently many instruments that are mean-independent of the included controls,

enforcing strong exclusion may reduce power. We discuss steps that researchers can take in the

direction of strong exclusion without enforcing it fully, and show the benefits of these steps both

theoretically, and numerically in our application.

A wide range of applications of structural methods in economics fit our setting. A leading

example is demand for differentiated products (Berry and Haile 2021; Gandhi and Nevo 2021).

Berry, Levinsohn, and Pakes (1995) and a large body of subsequent work address price endogeneity

using instruments constructed as a function of the characteristics of the products available in the

market (see also Bresnahan 1987).4 Strong exclusion fails in these cases because the estimators do

not use instruments that depend on excluded variables. Some studies (e.g., Berry, Levinsohn, and

Pakes 1999; Miller and Weinberg 2017; Backus, Conlon, and Sinkinson 2021) use functions of

both included variables (e.g., product characteristics) and excluded variables (e.g., cost shifters) as

instruments, but construct their estimators in such a way that strong exclusion will again typically

fail.5 We are not aware of estimates of differentiated goods demand models where strong exclusion

holds. Appendix D.3 extends our analysis to cover dynamic settings such as the estimation of

production function models with input endogeneity.

A large literature following Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996)

studies the interpretation of instrumental variables estimators under potential model misspecifi-

cation. Within this literature our work is closest to that of Angrist, Graddy, and Imbens (2000),

who study the nonparametric interpretation of estimands in linear simultaneous equations models

3Regarding instrument strength and efficiency in the context of the demand for differentiated goods, see, for example,
Reynaert and Verboven (2014), Rossi (2014), Armstrong (2016), Gandhi and Houde (2020), and Gandhi and Nevo
(2021). Gandhi and Houde (2020) recommend using carefully chosen functions of included variables as instruments
in order to improve instrument strength.

4Gandhi and Nevo (2021) write that “By far, the most popular IVs are ... the characteristics of all products in the
market” (p. 92). They explain that these instruments “are informative because they can be used to measure the
proximity of competition... and therefore should be correlated with price and other endogenous variables” (p. 92).
For examples of other work using instruments constructed as a function of included variables, see Bayer, Ferreira,
and McMillan (2007) and Bourreau, Sun, and Verboven (2021). A literature following Park and Gupta (2012) and
reviewed in Qian, Koschmann, and Xie (2024) recommends methods for correcting endogeneity that do not require
excluded variables.

5For examples of other work using instruments constructed as a function of included and excluded variables, with
more instruments than parameters, see Villas-Boas (2007), Decarolis, Polyakova, and Ryan (2020), Fan and Yang
(2020), Reynaert (2021), and Hristakeva (2022).
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when instruments are based on excluded exogenous variables. We differ in studying recovery of

the full range of causal summaries, and in considering settings in which the outcome variable is

potentially vector-valued, the researcher’s model is potentially nonlinear, and the instruments may

not be based on excluded exogenous variables. Our results are applicable to important economic

contexts in which nonlinear structural models are estimated using instruments, for which (to our

knowledge) a similar analysis of reliability under misspecification was not previously available.

We illustrate connections to the literature on linear models with examples in the text, and discuss

these connections in more detail in Section 4.3 and Appendix D.1.

Recent work has studied issues of nonparametric identification in settings like those we con-

sider.6 As our theoretical and numerical findings show, the availability of an excluded variable, or

even its use in a set of instruments, is not sufficient to ensure good performance of the researcher’s

estimator. Appendix D.2 presents some results on nonparametric identification for our setting and

discusses connections to prior work.

The notion of strong exclusion that we study is related to Ackerberg and Crawford’s (2009)

and Ackerberg, Crawford, and Hahn’s (2011) suggestion to learn the effect on an outcome of

one endogenous variable in the presence of a second endogenous variable by employing instru-

ments that are orthogonal to the second variable. It is also closely related to the suggestion in

Borusyak and Hull (2023) to recenter instruments (in the linear model) by subtracting their condi-

tional mean given observed covariates, and to conditions discussed in Kolesár (2013) and Blandhol

et al. (2022).7 As our theoretical development shows, strong exclusion concerns both which instru-

ments are chosen and how they are used in constructing moment conditions, something that plays

an important role in the GMM-type estimators we consider here and that is not (we think) obvious

from prior work.

The remainder of the paper proceeds as follows. Section 2 sets up our model. Section 3

defines causal summaries and shows what an oracle estimator can achieve. Section 4 defines

strong exclusion, explains it in examples, and presents our main results on the importance of strong

exclusion for approximate causal consistency. Section 5 presents our application to the demand

6See, for example, Berry and Haile (2014, 2016) regarding differentiated goods demand models and Gandhi, Navarro,
and Rivers (2020) regarding production models.

7Our work also relates to broader econometric literatures on efficient choice of instruments under correct specification
(e.g., Hansen 1982; Chamberlain 1987; Newey 1990) and optimal estimation under certain forms of potential mis-
specification (e.g., Kitamura, Otsu, and Evdokimov 2013; Armstrong and Kolesár 2021; Bonhomme and Weidner
2022). Analytically, our approach differs from much of this latter literature in that we consider misspecification that
is nonlocal, in the sense that the degree of misspecification remains fixed as the sample grows large.
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for beer and uses it to illustrate how to enforce strong exclusion in practice. We reserve our most

general theoretical statements, and some technical lemmata, for the appendix, with the main text

focusing on the key aspects that we think are most relevant to practitioners.

2 A Potentially Misspecified Structural Model

The researcher observes variables (Yi, Di, Xi, Zi) for units i = 1, ..., n. All variables are finite-

dimensional, and Yi ∈ RJ . To capture the possibility of misspecification, we introduce a model

with two layers: first, a nesting model that is consistent with the true data generating process

(DGP) and summarizes the causal relationships between the observed variables; and second, the

researcher’s model which is more restrictive and may rule out the true DGP.

2.1 Nesting Model

The nesting model is a general potential outcomes model (e.g., Imbens and Angrist 1994; An-

grist, Imbens, and Rubin 1996). Under the nesting model, the observed outcome satisfies Yi =
Yi (Di, Xi, Zi) for Yi (d, x, z) a potential outcome function, and similarly the observed endoge-

nous variable satisfies Di = Di (Xi, Zi) for Di (x, z) a potential endogenous variable function.

The potential outcome function Yi (·) and potential endogenous variable function Di (·) summa-

rize the true causal relationships between the variables. These functions may vary richly across

units for reasons that are unobserved by the researcher, making it difficult to learn the underlying

causal relationships.

Example. (Demand.) A researcher observes the log quantity Yi ∈ R of a single commodity (e.g.,

fish as in Angrist, Graddy, and Imbens 2000) in markets i = 1, ..., n, along with the log price Di,

a demand shifter Xi ∈ R such as log income, and a cost shifter Zi ∈ R such as weather. Or,

a researcher observes the market shares Yi ∈ RJ of J differentiated products (e.g., automobiles

as in Berry, Levinsohn, and Pakes 1995, or beer as in Miller and Weinberg 2017), along with the

prices Di ∈ RJ of each product, a matrix Xi ∈ RA×J collecting the A characteristics of each of

the J products, and cost shifters Zi ∈ RJ such as the distance to the owners’ closest brewery. The

potential outcome function Yi (d, x, z) summarizes the counterfactual demand for each product

in market i. The potential endogenous variable function Di (x, z) summarizes the counterfactual

price of each product in market i.
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Example. (Firm production.) A researcher observes log output Yi ∈ RJ across J periods for firms

i = 1, ..., n. For instance, these may be particular manufacturing firms observed over several years

(e.g., Olley and Pakes 1996; Gandhi, Navarro, and Rivers 2020). The researcher observes the

vector of log static inputs Di ∈ RJ such as labor, and other observables Xi,j which may include

dynamic inputs such as capital. The researcher also observes input cost shifters Zi,j such as factor

prices. The potential outcome function Yi (d, x, z) summarizes the production function for firm

i, and the potential endogenous variable function Di (x, z) summarizes the counterfactual static

input choices of firm i.

Throughout our analysis, we maintain two important restrictions on the nesting model, both of

which are in line with a long tradition of work studying instrumental variables. The first restriction

is exclusion: we assume that the potential outcome function Yi (d, x, z) does not directly depend on

Zi, and so we simply write the potential outcome function as Yi (d, x) and the observed outcome as

Yi (Di,Xi). In our demand estimation example, the exclusion restriction imposes that cost shifters

do not directly affect consumer demand. In our firm production example, the exclusion restriction

imposes that input price shocks do not directly affect output. We therefore refer to Zi as excluded

variables since they are assumed not to causally affect the outcome, and we conversely refer to Xi

as included variables since they may causally affect the outcome under the nesting model.

The second restriction is exogeneity, which requires that the excluded variables are unrelated

to the unobserved determinants of the outcome and endogenous variable. More precisely, we will

consider two forms of exogeneity: first, unconditional exogeneity meaning

(Yi (·) , Di (·)) ⊥⊥ (Xi, Zi); and second, conditional exogeneity meaning (Yi (·) , Di (·)) ⊥⊥ Zi|Xi.

Notice that unconditional exogeneity implies conditional exogeneity. Both forms of exogeneity

therefore imply that, conditional on the included variables Xi, the excluded variables Zi are ex-

ogenous with respect to the unobserved determinants of the outcome Yi and endogenous variable

Di. But only unconditional exogeneity implies that the included variables Xi are also exogenous.

We will state our negative results (on the absence of a desirable property of an estimator) under

unconditional exogeneity, which immediately implies that they hold under conditional exogeneity.

We will state our positive results (on the presence of a desirable property) under conditional exo-

geneity, which immediately implies that they hold under unconditional exogeneity. In this sense,

none of our findings hinge on a concern that the included variables Xi are endogenous.8

8Prior work has already devoted substantial attention to the possibility that the included variables Xi are endogenous
in the sense allowed by conditional exogeneity. Nevo (2000b) writes, “the main problem [with product characteristic
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Throughout the rest of the paper, we assume that (Yi (·) , Di (·) , Xi, Zi) are drawn i.i.d. for

units i = 1, ..., n according to some distribution G that lies in a class G satisfying the preceding

exclusion and exogeneity restrictions. The class of distributions G summarizes the nesting model.

Assumption 1 in Appendix A collects together additional regularity conditions about the nesting

model that we maintain throughout the paper.

2.2 Researcher’s Model

The researcher’s model is a special case of the nesting model. Under the researcher’s model, the

causal effects of the endogenous variable and included variables on the outcome are governed

by a finite-dimensional parameter θ ∈ RP , and the unobservables in the model are captured by

a finite-dimensional mean-zero variable ξi ∈ RJ . More specifically, the researcher specifies that

Yi = Y ∗ (Di, Xi, ξi; θ) for a function Y ∗ (·) that is known to the researcher up to the parameter θ.

Unlike the potential outcome function under the nesting model, the function Y ∗ (·) is not indexed

by i since all unobserved factors are contained in ξi ∈ RJ under the researcher’s model.

Importantly, we assume that the researcher’s model is invertible, meaning that there is a func-

tion R∗ (·; θ), known up to the parameter θ and determined by the form of Y ∗ (·), such that

ξi = R∗ (Yi, Di, Xi; θ0), where θ0 is the true value of the parameter θ. This invertibility property

is what will enable the researcher to estimate their model via GMM. Although not all structural

models in economics are invertible in this sense, many canonical ones are.

We will decompose θ = (α, β) where we may loosely think of the parameter β as governing

how the included variables Xi shift the implied residual and of the parameter α as governing the

remaining causal effects in the model. We will sharpen this distinction in Section 3.

Example. (Linear model.) Suppose the outcome variable Yi is a scalar (so J = 1), and the

researcher’s model is linear with Y ∗ (Di, Xi, ξ; θ) = αDi + Xiβ + ξi.

For instance, in the example of demand for a commodity, this researcher’s model imposes that

log quantity demanded Yi is linear in log price Di and in log income Xi, or equivalently that

demand is isoelastic in price and income. In this case, the residual function is R∗ (Yi, Di, Xi; θ) =
Yi−αDi−Xiβ. Angrist, Graddy, and Imbens (2000) study the causal interpretation of IV estimates

of α in such a setting.

instruments] is that in some cases the assumption that observed characteristics are uncorrelated with the unobserved
components is not valid” (p. 535). See also discussions in Berry, Levinsohn, and Pakes (1995), Bresnahan (1996),
Rossi (2014), Gandhi and Nevo (2021), Berry and Haile (2021), and Petrin, Ponder, and Seo (2022).
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Analogously, researchers often analyze firm production assuming a Cobb-Douglas technology,

in which case the researcher’s model for the log output of firm i in period j is again a linear

function of its contemporaneous, log input quantities (see, for example, Ackerberg, Caves, and

Frazer 2015, Section 4.3.3; Blundell and Bond 1998, 2000). Accommodating the instrumental

variable strategies commonly used in production function estimation requires us to extend our

analysis to a dynamic setting. Since this extension requires more cumbersome notation but does

not introduce new ideas, we provide it in Appendix D.3.

Example. (Logit model.) Suppose now that the outcome variable Yi is a vector (so J ≥ 1), and the

researcher’s model is a logit model for the market shares of differentiated products (for example,

different beers). In this case,

Y ∗
j (Di, Xi, ξi; θ) = exp (αDi,j + Xi,jβ + ξi,j)

1 +∑J
j′=1 exp (αDi,j′ + Xi,j′β + ξi,j′)

,

where j = 0 denotes the outside option (for example, not buying any beer). In this case, we can

define the residual function as

R∗
j (Yi, Di, Xi; θ) = ln Yi,j − ln Yi,0 − αDi,j − Xi,jβ

where Yi,0 = 1 − ∑J
j=1 Yi,j is the market share of the outside good, and R∗

j (·; θ) denotes the jth

element of the residual function.

Example. (Random coefficients logit model.) Suppose instead that the researcher assumes, in

each market i, there is a unit mass of consumers c that each choose one product j to maximize

their utility given by uc,i,j = α1Di,j + Xi,j (β + νc,i) + ξi,j + ϵc,i,j , where νc,i ∈ RA is an i.i.d.

mean-zero random coefficient with a distribution F (·; α2) known up to the parameter α2, and ϵc,i,j

is a consumer-specific utility shock that follows an i.i.d. type-I extreme value distribution and is

independent of all other variables. In this case, the researcher’s model for product market shares is

given by

Y ∗
j (Di, Xi, ξi; θ) =

∫ exp (α1Di,j + Xi,j (β + νc,i) + ξi,j)
1 +∑J

j′=1 exp (α1Di,j′ + Xi,j′ (β + νc,i) + ξi,j′)
dF (νc,i; α2) .

Under conditions discussed in, for example, Berry (1994), Berry, Levinsohn, and Pakes (1995), and

Berry, Gandhi, and Haile (2013), the researcher can recover ξi via a residual function R∗
j (Yi, Di, Xi; θ)
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that depends on market shares, product prices, product characteristics, and θ.

3 Summarizing Causal Effects Under Potential Misspecification

We suppose that the researcher is interested in studying the causal or counterfactual effects of

the endogenous variable Di on the outcome Yi.9 To describe these, we assume that the poten-

tial outcome function Yi (d, Xi) is differentiable in the endogenous variable d under the nesting

model, such that causal effects at the observed value (Di, Xi) are captured by the partial deriva-

tive ∂Yi (Di, Xi) /∂Di. Of course this partial derivative is an extremely rich object. In the de-

mand estimation example with J products, the partial derivative ∂Yi (Di, Xi) /∂Di is a J × J

matrix that summarizes how the market share of each product varies with respect to the price

of every other product in the market. Moreover, because demand may be nonlinear, the value

of ∂Yi (Di, Xi) /∂Di generally depends on the value of (Di, Xi) at which it is evaluated, so that

∂Yi (Di, Xi) /∂Di will typically differ across units i. Finally, a researcher may be interested in

evaluating the partial derivatives ∂Yi (d, Xi) /∂d at values of d other than the one that is observed,

for example to integrate these derivatives and thus predict demand at a counterfactual price.

3.1 Summarizing Causal Effects

In order to tame the richness of causal effects in these settings, researchers commonly report sum-

maries of causal effects, such as averages. In the demand estimation setting, for example, the

average own-price elasticity evaluated at observed prices Di is related to the extent of market

power (Miller and Weinberg 2017). To describe a wide range of such targets that may be of

economic interest, we define a causal summary τ as some generalized weighted average of the

partial derivatives ∂Yi (d, Xi) /∂d, where the average may be taken across elements of the ma-

trix ∂Yi (d, Xi) /∂d, across units i, and/or across values d, and where the weights may be data-

dependent or even DGP-dependent. We let T be the set of all such summaries with bounded

weights. We assume that all causal summaries are scalar-valued, but if a researcher is instead

interested in multi-dimensional summaries, our results naturally extend.

Definition 1. A causal summary τ is a generalized weighted average of the partial derivatives

9If a researcher wishes to study the causal effects of Xi on Yi, statements analogous to those we present in Section 3.2
will apply, replacing partial derivatives with respect to Di with partial derivatives with respect to Xi.
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∂Yi (d, Xi) /∂d, i.e.,

τ (G) =
∑
j,j′

EG

[∫ ∂

∂dj

Yi,j′ (d, Xi) dωi,j,j′ (d)
]

where the expectation EG [·] is taken with respect to draws of units i from the DGP G and where

dωi,j,j′ (·) are weights. The set T consists of all causal summaries with uniformly bounded weights,

maxj,j′
∫

|dωi,j,j′ (d)| ≤ W for all i and some W > 0. We use the notation dj without implying

that dim (d) = J in general.

Example. (Demand for differentiated goods.) We can measure the average degree of substitutabil-

ity of the average product with other products by the average own-price elasticity at observed

prices. In a sample of n markets, this is 1
n

∑n
i=1

1
J

∑J
j=1

Di,j

Yi,j

∂Yi,j

∂Di,j
. In expectation under the DGP G,

it is τ (G) = EG

[
1
J

∑J
j=1

Di,j

Yi,j

∂Yi,j

∂Di,j

]
. The average own-price elasticity at observed prices is there-

fore a causal summary where the weights dωi,j,j′ (d) assign mass 1
J

Di,j′

Yi,j
when j′ = j and d = Di,

and zero mass otherwise. These weights are data-dependent. An estimated average own-price elas-

ticity is reported in many articles that estimate demand for differentiated goods (e.g., Bento et al.

2009, Table 4; Starc 2014, page 208; Miravete, Seim, and Thurk 2018, Table V; Grieco, Murry,

and Yurukoglu 2024, Table V).

We can measure the relative substitutability of one good, say j = 1, with respect to two other

goods, say j = 2, 3, by the average difference in cross-price elasticities, τ (G) = EG

[
Di,2
Yi,1

∂Yi,1
∂Di,2

− Di,3
Yi,1

∂Yi,1
∂Di,3

]
,

at observed prices. The average difference in cross-price elasticities at observed prices constitutes

a causal summary where the weights dωi,j,j′ (d) assign positive mass Di,2
Yi,1

when j = 1, j′ = 2
and d = Di, negative mass −Di,3

Yi,1
when j = 1, j′ = 3, and d = Di, and zero mass otherwise.10

Another example with naturally negative weights is the difference in average elasticities between

two groups of markets (e.g., Gandhi, Lu, and Shi 2023, Table 8).

We can measure the extent to which an increase in the price of one product, say j = 1, displaces

demand to another product, say j = 2, by the average diversion ratio, τ (G) = EG

[
∂Yi,2/∂Di,1
∂Yi,1/∂Di,1

]
,

at the observed prices. The average diversion ratio constitutes a causal summary with weights

dωi,j,j′ (d) that assign mass 1
∂Yi,j/∂Di,j

when j = 1, j′ = 2, and d = Di, and zero mass otherwise.

These weights depend on the potential outcome function. An estimated average diversion ratio is

reported in, for example, Backus, Conlon, and Sinkinson (2021, Table 4), Conlon and Mortimer

(2021, Table 4), Almagro et al. (2024, Table 2), and Fosgerau, Monardo, and de Palma (Forthcom-

ing, Table 6).

10Formally, the weights can be negative because they are based on a signed measure (see Appendix A).
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Suppose that an economic model predicts the change ∆i in price Di in each market i due

to a change in market structure (e.g., a merger). In a given market, the resulting change in the

market share of good j is
∫ 1

0
dYi,j(Di+t∆i,Xi)

dt
dt. In expectation under the DGP G, it is τ (G) =

EG

[∫ 1
0

dYi,j(Di+t∆i,Xi)
dt

dt
]
. The counterfactual change in market share constitutes a causal summary

with data-dependent weights dωi,j,j′ (d) that are uniform on the interval [Di,j, Di,j + ∆i] when

j = j′, and assign zero mass elsewhere. Because the consumer’s surplus is an integral over

counterfactual changes in demand, and an integral is a linear functional, the average change in

consumer’s surplus in response to the change ∆i in prices, as well as the consumer’s surplus

at observed prices, also constitute causal summaries.11 An estimated average or total change in

consumer’s surplus in response to a counterfactual change in prices is reported in, for example,

Nevo (2000a, Table 7), Town (2001, p. 986), Miller and Weinberg (2017, Table X), Döpper et al.

(2024, Table 3), and Grieco, Murry, and Yurukoglu (2024, Figure XII).

An appealing aspect of the researcher’s model is that it implies an estimate of any causal sum-

mary τ ∈ T given an estimate of the unknown parameters θ0. More specifically, given an estimate

θ̃, the researcher can estimate the unobservable ξi

(
θ̃
)

= R∗
(
Yi, Di, Xi; θ̃

)
using the residual func-

tion, and thereby estimate the partial derivative ∂Y ∗
i

(
d, Xi, ξi

(
θ̃
)

; θ̃
)

/∂d in each observed unit

i and at each value d. The estimated partial derivatives imply an estimate τ ∗
(
θ̃
)

of any causal

summary under the researcher’s model. Thus, a researcher with an estimate θ̃ of the parameter θ0

automatically possesses mutually consistent estimates of a wide range of economically interesting

targets. Of course, the researcher’s model may be misspecified and so these estimates need not be

correct. We measure the researcher’s error for a given causal summary τ , given some true DGP

G ∈ G, by the absolute value
∣∣∣τ ∗

(
θ̃
)

− τ (G)
∣∣∣ of the difference between the value τ ∗

(
θ̃
)

implied

by the researcher’s estimate and the true value τ (G) under the given DGP.

Definition 2. The researcher’s error for a given causal summary τ ∈ T under parameter value θ

and DGP G is the absolute difference |τ ∗ (θ) − τ (G)| between the true value τ (G) of the causal

11With quasilinear utility, the change in consumer’s surplus can be written as τ (G) =
EG

[∑
j ∆i,j

∫ 1
0
∫ 1

0
dYi,j(t(Di+s∆i),Xi)

dt dtds
]
; see, e.g., Berry and Haile (2014, Section 4.2). The baseline

consumer’s surplus is then the change in consumer’s surplus from an increase in prices large enough to take all
market shares to zero. Though many common formulations imply quasilinearity (again see Berry and Haile 2014,
Section 4.2), these causal summaries remain well-defined even if the set of potential outcomes models includes
models of demand that are microfounded without quasilinear utility.
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summary and its model-implied counterpart

τ ∗ (θ) =
∑
j,j′

EG

[∫ ∂

∂dj

Y ∗
i,j′ (d, Xi, ξi (θ) ; θ) dωi,j,j′ (d)

]

for ξi (θ) = R∗ (Yi, Di, Xi; θ) .

Example. (Linear model, continued.) Here, the model-implied counterpart of the average price

elasticity at observed prices is τ ∗ (θ) = α. The model-implied counterpart of the average change

in demand when increasing the log price by ∆ is τ ∗ (θ) = α∆.

Example. (Logit model, continued.) Here, the model-implied counterpart of the average own-

price elasticity at observed prices is τ ∗ (θ) = α 1
J

∑J
j=1 EG [Di,j (1 − Yi,j)]. The model-implied

values of cross-price elasticities and counterfactual changes in demand likewise follow from stan-

dard formulae.

3.2 Bounding Error with an Oracle Estimator

To analyze the researcher’s error without reference to any particular approach to estimation, we

consider an oracle that works within the confines of the researcher’s (potentially misspecified)

model. In particular, the oracle can choose an estimator θ̃ (G) of the parameters of the researcher’s

model as a function of the true DGP (Yi (·) , Di (·) , Xi, Zi) ∼ G. This is infeasible in practice, of

course: such an estimator can depend, for example, on the distribution of the true partial derivatives

∂Yi (d, Xi) /∂d; because knowing these requires observing the same unit (e.g., market) at different

values of the endogenous variable (e.g., prices), their distribution is not generally identified even in

randomized experiments (e.g., Manski 1997; Fan, Guerre, and Zhu 2017). Analysis of the oracle

therefore establishes the outer limit of what the researcher could possibly hope to achieve under

their model. We use the oracle to examine what forms of misspecification the researcher can and

cannot hope to tolerate.

Towards an answer, we say that the researcher’s model satisfies causally correct specification

if there is some value θ of the unknown parameter under which the researcher’s model correctly de-

scribes the causal effects of Di on Yi, so that, for example, ∂Yi (Di, Xi) /∂Di = ∂Y ∗
i (Di, Xi, ξi; θ) /∂Di

under the true DGP. Importantly, causally correct specification only requires that the researcher’s

model correctly describes the causal effects of Di on Yi for some value of the parameter θ; this need

not be the value that the researcher estimates. At the same time, because θ is finite-dimensional and
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the distribution of ∂Yi (Di, Xi) /∂Di is not, it appears unlikely that causally correct specification

will hold exactly in typical applications.

We measure departures from causally correct specification with the distance from causally cor-

rect specification, defined as the distance of the true DGP to one with causally correct specification.

To state this definition, for a given value of the researcher’s parameter θ, let δ (θ, G) be the largest

expected discrepancy, under the true DGP G, between the true causal effects of Di on Yi and those

implied by the researcher’s model under θ. We then let δ (G) be the smallest possible value of

δ (θ, G) under any parameterization of the researcher’s model. We take δ (G) as our measure of

the distance from causally correct specification of the researcher’s model.

Definition 3. The researcher’s model satisfies causally correct specification under a DGP G if

there is some value θ of the parameter at which the researcher’s model correctly describes the

causal effects of Di on Yi. The distance from causally correct specification δ (G) measures the

degree to which the researcher’s model departs from causally correct specification under G.

That is, δ (G) = infθ δ (θ, G) where

δ (θ, G) =
∑
j,j′

EG

[
sup

d

∣∣∣∣∣∂Yi,j (d, Xi)
∂dj′

−
∂Y ∗

i,j (d, Xi, ξi (θ) ; θ)
∂dj′

∣∣∣∣∣
]

,

for ξi (θ) = R∗ (Yi, Di, Xi; θ) , and causally correct specification holds if and only if δ (G) = 0.

Intuitively, believing that the researcher’s model is close to causally correct specification means

believing that the researcher’s model is flexible enough to get the causal effects of interest approx-

imately right under some value of θ.

Our next result shows that approximately causally correct specification is necessary (and suf-

ficient) for even an oracle to ensure bounded estimation error across the full range of causal sum-

maries.

Proposition 1. For any bound b > 0, if δ (G) is unbounded over G, then there is no oracle esti-

mator θ̃ (·) that achieves error
∣∣∣τ ∗

(
θ̃ (G)

)
− τ (G)

∣∣∣ ≤ b for all causal summaries τ ∈ T and all

G ∈ G.

By contrast, there exists some oracle estimator θ̃ (·) such that, for any bound b > 0 on

the error, there is a bound δ ≥ 0 on the distance from causally correct specification such that∣∣∣τ ∗
(
θ̃ (G)

)
− τ (G)

∣∣∣ ≤ b for all causal summaries τ ∈ T whenever δ (G) ≤ δ.
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Because the oracle estimator θ̃ (G) can depend directly on the distribution of potential outcomes,

the conclusions of Proposition 1 hold irrespective of what form of exogeneity (if any) we impose

on the covariates Xi, Zi.

Proposition 1 shows that approximately causally correct specification is necessary and suffi-

cient for approximately correct oracle estimation of causal summaries. In this sense, approxi-

mately causally correct specification emerges from our analysis as the property the researcher’s

model must attain in order to deliver reliable answers to the full range of economic questions that

we consider. Before further unpacking the economic content of causally correct specification, we

pause to discuss the interpretation of Proposition 1 with narrower, or broader, classes of economic

questions.

Remark 1. (Restrictions on causal summaries.) While Proposition 1 considers a researcher inter-

ested in all causal summaries T , the proof in Appendix A.1 shows that an analogous result applies

for a researcher interested in a subset of causal summaries T ∗ ⊆ T . In particular, if T ∗ con-

tains causal summaries that put nonzero weight only on certain partial derivatives (e.g., own-price

derivatives at observed prices), then an analogue of Proposition 1 applies, replacing δ (G) with a

counterpart that depends only on the distance from correct specification of those particular partial

derivatives.

Remark 2. (Relaxations of causal summaries.) While Proposition 1 focuses on causal summaries

that are linear in the partial derivatives ∂
∂dj

Yi,j′ (d, Xi), arguments similar to those in Appendix A.4

imply that for a suitably-defined oracle estimator θ̃ (·), Y ∗
i

(
d, Xi, ξi

(
θ̃ (G)

)
; θ̃ (G)

)
approximates

Yi (d, Xi) uniformly in d as δ (G) → 0, so the true and model-implied potential outcomes match

in levels, not just derivatives. Consequently, under mild regularity conditions the positive result in

Proposition 1, as well as the positive results we obtain for feasible estimators in Section 4, can be

extended to accommodate any summary that can be expressed as an expectation of a continuous

function of the potential outcomes Yi (·). This would include, for example, the equilibrium change

in price under a counterfactual change in market structure, provided that equilibrium conditions

imply that this change is continuous in Yi (·).

3.3 Interpretation of Causally Correct Specification

Proposition 1 shows that approximately causally correct specification is necessary for the re-

searcher to reliably estimate causal summaries. We next unpack the economic content of ap-

proximately causally correct specification, and show that while approximately causally correct
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specification requires small misspecification of causal effects of Di on Yi, it permits arbitrary

misspecification of causal effects of Xi on Yi. Specifically, we show that causally correct speci-

fication holds whenever the true potential outcomes match the researcher’s model up to an i- and

x-dependent shift in the residuals. Assumption 2 in Appendix A states additional regularity condi-

tions that we maintain for this subsection, including that the support of Yi (·) |Xi does not depend

on Xi.

To state our main result in this section, note that, for any residual function R∗ (Yi, Di, Xi; θ),
we can choose a partition θ = (α, β) of the parameters, with β possibly empty, so that the function

is additively separable in a term in α and a term in Xi and β,

R∗ (Yi, Di, Xi; θ) = R∗∗ (Yi, Di, Xi; α) − L∗∗ (Xi; β) .

As a result, we can rewrite the model-implied potential outcomes as

Y ∗ (Di, Xi, ξi; θ) = Y ∗∗ (Di, Xi, ξi + L∗∗ (Xi; β) ; α) .

With this representation, causally correct specification amounts to correct specification of Y ∗∗,

with no restriction on L∗∗.

Proposition 2. Causally correct specification holds if and only if, under the true DGP G, there is

some value α0 such that

Yi (d, x) = Y ∗∗ (d, x, ξi + Li (x) ; α0)

for some (possibly unknown) unit-specific function Li (x), and some residual ξi ∈ RJ .

Taken together, Propositions 1 and 2 imply that the oracle can reach approximately correct

conclusions about causal summaries even if the form of L∗∗ (Xi; β) is badly misspecified. Intu-

itively, because causal summaries concern effects of Di on Yi, Proposition 1 is restrictive regarding

misspecification of effects of Di on Yi, but permissive regarding misspecification of effects of Xi

on Yi.

Example. (Linear model.) Recall that the researcher assumes that Yi = αDi + Xiβ + ξi. As

we increase the distance from causally correct specification, we allow for departures from a lin-

ear, homogeneous effect of Di on Yi. Under causally correct specification, we may have that

Yi (Di, Xi) = α0Di + Li (Xi) + ξi for Li (Xi) an unknown function, and α0 some value of the
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price coefficient α. Here, the researcher is correct in supposing that the effect of Di on Yi is linear

and homogeneous, but may have misspecified the way that the included variables (e.g., log income)

affect the outcome (e.g., log quantity demanded), and may have omitted other unit-specific factors.

For example, the true DGP may have that log income enters quadratically instead of linearly,

Li (Xi) = Xiβ + X2
i γ, or that log income enters linearly but with a market-specific coefficient,

Li (Xi) = Xiβi.

Example. (Logit model.) Recall that the researcher assumes that Yi follows a multinomial logit

model, so that the model-implied causal effect of Di on Yi follows a tightly parameterized structure

with, for example, ∂Y ∗
i,j (Di, Xi, ξi; θ) /∂Di,j = αYi,j (1 − Yi,j) and ∂Y ∗

i,j (Di, Xi, ξi; θ) /∂Di,k =
−αYi,jYi,k. As we increase the distance from causally correct specification, we allow for more

general substitution patterns. Under causally correct specification, we may have that the potential

outcomes satisfy

Yi,j (Di, Xi) = exp (α0Di,j + Li,j (Xi,j) + ξi,j)
1 +∑J

j′=1 exp (α0Di,j′ + Li,j (Xi,j) + ξi,j′)

for Li,j (·) an unknown function, and α0 some value of the price coefficient α. Here, the researcher

has correctly modeled the effect of Di on Yi, but may have misspecified the way that the included

variables Xi,j (e.g., product characteristics) affect the outcome (e.g., market shares). For example,

taking for simplicity the case where Xi,j is a scalar, the true DGP may have that the product

characteristic enters quadratically instead of linearly, Li,j (Xi,j) = Xi,jβ+X2
i,jγ, or that the product

characteristic enters linearly but with a market-specific coefficient, Li,j (Xi,j) = Xi,jβi.

Example. (Random coefficients logit model.) Recall that the researcher specifies the model

Y ∗
j (Di, Xi, ξi; θ) =

∫ exp (α1Di,j + Xi,j (β + νc,i) + ξi,j)
1 +∑J

j′=1 exp (α1Di,j′ + Xi,j′ (β + νc,i) + ξi,j′)
dF (νc,i; α2)

where νc,i is a mean-zero random coefficient distributed across consumers according to cdf F (·; α2)
known up to the parameter α2. The parameter β can be thought of as controlling the mean pref-

erence for characteristics Xi,j , the parameter α2 as controlling the dispersion in the preference for

these characteristics, and the parameter α1 as controlling the effect of price on the mean preference.

Under causally correct specification, we may have that the potential outcomes satisfy

Yi,j (Di, Xi) =
∫ exp (α0,1Di,j + Li,j (Xi,j) + Xi,jνc,i + ξi,j)

1 +∑J
j′=1 exp (α0,1Dij′ + Li,j′ (Xi,j) + Xi,j′νc,i + ξi,j′)

dF (νc,i; α0,2)

18



for Li,j (·) an unknown function, and α0 = (α0,1, α0,2) some values of the price coefficient and

dispersion parameter. Here, the researcher has specified the model correctly up to potentially

misspecifying the way that product characteristics Xi,j affect the mean preference for good j. For

example, again taking for simplicity the case where Xi,j is a scalar, the true DGP may have that the

product characteristic affects the mean preference for good j with a quadratic term, Li,j (Xi,j) +
Xi,jνc,i = Xi,jβ + X2

i,jγ + Xi,jνc,i, or with a market-specific coefficient, Li,j (Xi,j) + Xi,jνc,i =
Xi,jβi + Xi,jνc,i. Importantly, these forms of misspecification affect only the mean preference for

the characteristic, and preserve the dispersion in the preference for the characteristic.

Remark 3. (Causally correct specification with an invertible demand system.) Berry, Gandhi, and

Haile (2013) and Berry and Haile (2014), among others, discuss conditions under which a demand

system can be inverted, for example to recover a mean utility for each product (see, for example,

Lemma 1 and Equation 5 in Berry and Haile 2014). Proposition 2 shows that, when the researcher’s

specified demand system can be inverted to recover a mean utility, causally correct specification

holds when the researcher has specified the form of the inversion correctly, but may have specified

the dependence of the mean utility on observable product characteristics, and (possibly unobserv-

able) market characteristics, incorrectly.

Remark 4. (Causally correct specification under no causal effects.) Causally correct specifica-

tion holds when Di has no causal effect on Yi and the researcher’s model allows this possi-

bility. Specifically, causally correct specification holds if under the true DGP G, we have that

Yi (d, Xi) = Yi (d′, Xi) for all d, d′ ∈ D, and if, under the researcher’s model, there is some α0

such that Y ∗ (d, Xi, ξi; α0) = Y ∗ (d′, Xi, ξi; α0) for all d, d′ ∈ D.

4 GMM Estimation With and Without Strong Exclusion

To this point, we analyzed the effect of model misspecification without reference to any particular

approach to estimation, establishing that approximately causally correct specification is necessary

and sufficient for approximately correct estimation of causal summaries by the oracle. We next

consider a researcher that estimates their model by GMM using moment conditions that depend on

instrumental variables, where these instrumental variables are transformations of the included vari-

ables Xi and the excluded variables Zi. We ask under what conditions the researcher’s estimator

delivers approximately correct estimates of causal summaries in large samples.
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To construct their GMM estimator, the researcher first selects some function f ∗ (Xi, Zi) of the

covariates to serve as instrumental variables. The researcher then constructs a moment function of

the form

m̂ (θ) = 1
n

∑
i

mi (θ) = 1
n

∑
i

f ∗ (Xi, Zi) R∗ (Yi, Di, Xi; θ) .

Under the researcher’s model and the assumption of unconditional exogeneity, m̂ (θ0) converges to

zero in large samples, where recall that θ0 is the true value of the unknown parameter. Motivated

by this fact, the researcher’s estimator θ̂ solves

min
θ

m̂ (θ)′ Ω̂m̂ (θ)

where Ω̂ is some weight matrix with population value Ω. When interior, the estimator θ̂ will satisfy

the first-order condition

0 = ∂

∂θ
m̂
(
θ̂
)′

Ω̂m̂
(
θ̂
)

∝ M̂θΩ̂
1
n

∑
i

f ∗ (Xi, Zi) R∗
(
Yi, Di, Xi; θ̂

)
.

where M̂θ is a shorthand for 1
n

∑
i f ∗ (Xi, Zi) ∂

∂θ
R∗
(
Yi, Di, Xi; θ̂

)
, with population value Mθ.

Under standard regularity conditions (e.g., Newey and McFadden 1994), the estimator θ̂ will

converge in large samples to an estimand θ∗ (G) that solves a population analogue of the first-order

condition:

0 = EG [MθΩf ∗ (Xi, Zi) R∗ (Yi, Di, Xi; θ∗ (G))] . (1)

The estimand is well-defined even if the researcher’s model is misspecified, and if the researcher’s

model holds, it will equal the true parameter value, θ∗ (G) = θ0.

We assume that the researcher’s estimand satisfies an equation of the above form,

0 = EG [f ∗
G (Xi, Zi) R∗ (Yi, Di, Xi; θ∗ (G))] . (2)

An equation of the form of (2) holds for the GMM estimand described in (1) as well as for esti-

mands of some non-GMM estimators. In the case of the GMM estimand described in (1), we have

f ∗
G (Xi, Zi) = MθΩf ∗ (Xi, Zi), with the subscript G a reminder that the population values of Ω

and Mθ may depend on the DGP. In the special case of just-identified GMM, where f ∗ (Xi, Zi) has

the same dimension as θ, we have f ∗
G (Xi, Zi) = f ∗ (Xi, Zi).
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Example. (Linear model, continued.) Here the sample moment function takes the form

m̂ (θ) = 1
n

∑
i

f ∗ (Xi, Zi) (Yi − αDi − Xiβ) .

Suppose the researcher selects instruments f ∗ (Xi, Zi) = (Xi, Zi) and estimates via GMM. Be-

cause we are in a case of just-identified GMM, we have that f ∗
G (Xi, Zi) = f ∗ (Xi, Zi) = (Xi, Zi).

Suppose, instead, that the researcher selects instruments f ∗ (Xi, Zi) = (Xi, Zi, Z2
i )′ and esti-

mates via efficient GMM under the assumption of homoskedastic errors ξi. In this case,

f ∗
G(Xi, Zi) = EG

[
(Xi, Di)′

(
Xi, Zi, Z2

i

)]
EG

[(
Xi, Zi, Z2

i

)′ (
Xi, Zi, Z2

i

)]−1 (
Xi, Zi, Z2

i

)
′,

which is equivalent to estimation via two-stage least squares.

Example. (Logit model, continued.) Here the sample moment function takes the form

m̂ (θ) = 1
n

∑
i

J∑
j=1

f ∗
j (Xi, Zi) (ln Yi,j − ln Yi,0 − αDi,j − Xi,jβ) .

Suppose the researcher selects instruments f ∗
j (Xi, Zi) = (Xi,j, Zi,j) and estimates via GMM.

Then we again have that f ∗
G (Xi, Zi) = f ∗ (Xi, Zi) = (Xi, Zi).

Suppose, instead, that the researcher selects instruments f ∗
j (Xi, Zi) =

(
Xi,j, Zi,j, Z2

i,j

)
. Es-

timation via efficient GMM under the assumption of errors ξi,j that are independent and ho-

moskedastic across i, j will again result in the two-stage least squares estimator, with f ∗
G (Xi, Zi)

taking an analogous form to the linear model.

4.1 Strong Exclusion of the Researcher’s Estimator

Taking the researcher’s model and form of estimator as given, the behavior of the researcher’s

estimand θ∗ (G) is determined by the researcher’s choices of instrumental variables f ∗ (Xi, Zi)
and weights Ω̂. In the case of just-identified GMM, where f ∗ (Xi, Zi) has the same dimension

as θ, the weight matrix drops out of the first-order condition, and only the choice of instruments

matters. In the case of over-identified GMM, where f ∗ (Xi, Zi) has larger dimension than θ, the

weight matrix also plays a role.

There is reason to expect the choice of instruments f ∗ (Xi, Zi) to be important for the re-

searcher’s ability to correctly recover targets of interest under misspecification. Prior work on
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the nonparametric identification of differentiated goods demand models emphasizes the need for

data on excluded variables Zi.12 In our setting, Appendix D.2 shows that, under mild conditions,

there exists a nonparametrically identified, nontrivial causal summary τ ∈ T if and only if the

researcher has data on excluded variables Zi. Although these results concern nonparametric iden-

tification rather than estimation under misspecification, they suggest that the excluded variables Zi

play an important role in recovering causal summaries.

Consistent with this intuition, we find that the behavior of the researcher’s estimator depends on

whether it satisfies a criterion that we call strong reliance on mean-independent excluded variables,

or strong exclusion for short. To define strong exclusion, recall that a random variable Vi is mean-

independent of Xi if E [Vi|Xi] = E [Vi] .

Definition 4. The researcher’s estimator satisfies strong reliance on mean-independent excluded

variables, or strong exclusion for short, if the corresponding estimand solves a moment equation

of the form in (2), where there is a component of f ∗
G (Xi, Zi) that is mean-independent of Xi,

mean-zero, and has at least dim (α) = dim (θ) − dim (β) linearly independent rows, where recall

that β is the parameter that controls the way that the included variables shift the residual in the

researcher’s model.

That is, the researcher’s estimator satisfies strong exclusion if for all DGPs G ∈ G the estimand

solves (2) for some f ∗
G (Xi, Zi) =

(
fE

G (Xi, Zi)′ , f I
G (Xi, Zi)′

)′
where E

[
fE

G (Xi, Zi) |Xi

]
= 0,

rank
(
EG

[
fE

G (Xi, Zi) fE
G (Xi, Zi)′

])
≥ dim (α)

for α defined as in Proposition 2.

To unpack this definition, we discuss it first in a setting of just-identification, and next in a setting

of over-identification.

Suppose first that there are exactly as many instrumental variables as there are parameters in

θ. Then strong exclusion is equivalent to two requirements. The minimal excluded dimension

requirement is that there are at least as many instrumental variables in f (Xi, Zi) that depend on

the excluded variables Zi as there are parameters in α, i.e., parameters in θ that do not govern the

additive shift in the residual. The mean-independence requirement is that these functions of Zi are

12Berry and Haile (2014) discuss the need for excluded variables for nonparametric identification of differentiated
goods demand models, writing, “We emphasize that we require both the excluded instruments... and the exogenous
demand shifters” (pp. 1761-2). See also Berry and Haile (2016).
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mean-independent of the included variables Xi and have mean zero. It is helpful to understand

these requirements in the context of a familiar example.

Example. (Linear model, continued.) Recall that dim (α) = 1. For simplicity say that Xi and Zi

are scalar. A natural choice of instruments might be f ∗ (Xi, Zi) = (Xi, Zi), in which case the min-

imal excluded dimension requirement is automatically satisfied. Other choices that involve a single

instrument dependent on Zi, such as f ∗ (Xi, Zi) = (Xi, Z2
i ), will also satisfy the minimal excluded

dimension requirement. On the other hand, the choice of instruments f ∗ (Xi, Zi) = (Xi, X2
i ) does

not satisfy the minimal excluded dimension requirement, even though it is an appropriate choice

of instruments in the case where the researcher’s model holds (see, e.g., Gao and Wang 2023).

Researchers employing excluded variables as instruments often argue that these variables are

“balanced” with respect to included variables (e.g., Attanasio et al. 2020). Mean-independence

is a strong form of balance. In the case where the instruments are f ∗ (Xi, Zi) = (Xi, Zi), mean

independence requires that E [Zi|Xi] = E [Zi] = 0. There are some situations in which mean-

independence is easy to satisfy in a linear model. One is where the researcher has a design-based

model of the assignment of Zi, as in Borusyak and Hull (2023), because in this case the researcher

can readily construct E [Zi|Xi] using the model of assignment, and then take

f ∗ (Xi, Zi) = (Xi, Zi − E [Zi|Xi]). There are also some situations in which mean-independence

holds automatically in a linear model. One is where the included variable Xi enters the model and

instrument vector sufficiently flexibly, as in the rich covariates condition of Blandhol et al. (2022),

because in this case a linear IV estimator using f ∗ (Xi, Zi) = (Xi, Zi) has the same estimand

as one using f ∗ (Xi, Zi) = (Xi, Zi − E [Zi|Xi]). In the remaining situations, enforcing strong

exclusion requires adopting some estimator of the conditional expectation function E [Zi|Xi]. For-

tunately, estimators of conditional expectation functions are widely studied in the literatures on

nonparametric estimation and machine learning. Appendix C.3 discusses conditions for the use of

such estimators in a first step that precedes GMM estimation.

Example. (Logit model, continued.) Recall that dim (α) = 1. For simplicity, say that Xi,j and

Zi,j are again scalar. A popular choice of instruments in the spirit of Berry, Levinsohn, and Pakes

(1995) is f ∗
j (Xi, Zi) =

(
Xi,j, X i,−j

)
where X i,−j is the average of the characteristic Xi,j for

products in market i other than product j. These instruments do not satisfy strong exclusion.

An alternative choice of instruments might be f ∗
j (Xi, Zi) = (Xi,j, Zi,j) where Zi,j is the cost

shifter for product j, which satisfies the minimal excluded dimension requirement. If Zi,j is mean-
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independent of Xi and has mean zero, then this choice further satisfies the mean-independence

requirement.

Suppose next that there are more instrumental variables than there are parameters in θ. In this

case, the minimal excluded dimension requirement and the mean-independence requirement are

necessary, but no longer generally sufficient, for strong exclusion. Instead, Appendix C.1 shows

that strong exclusion typically requires the additional maximal included dimension requirement

that there are no more instrumental variables in f ∗ (Xi, Zi) that depend only on the included vari-

ables Xi than there are parameters in β, i.e., parameters in θ that govern the additive shift in the

residual. Again, it is helpful to understand the maximal included dimension requirement in the

context of an example.

Example. (Linear model, continued.) When Xi is scalar, dim (β) = 1. The choice of instruments

f ∗ (Xi, Zi) = (Xi, Zi, Z2
i ) satisfies the maximal included dimension requirement, whereas the

choice f ∗ (Xi, Zi) = (Xi, Zi, X2
i ) does not.

Example. (Logit model, continued.) When Xi is scalar, dim (β) = 1. The choice of instruments

f ∗
j (Xi, Zi) =

(
Xi,j, Zi,j, Z2

i,j

)
satisfies the maximal included dimension requirement, whereas the

choice f ∗
j (Xi, Zi) =

(
Xi,j, Zi,j, X i,−j

)
does not.

If we strengthen the maximal included dimension requirement to state that there are no more

instrumental variables in f ∗ (Xi, Zi) that depend at all on the included variables Xi than there are

parameters in β, then this stronger requirement, in tandem with the minimal included dimension

requirement and the mean-independence requirement, is typically sufficient for strong exclusion

(again see Appendix C.1).

To preview why strong exclusion is important, recall that, under causally correct specification,

the researcher’s model can correctly describe the causal effects of Di on Yi given a good estimate

of α. Because strong exclusion ensures that the portion of the first-order condition involving α can

use instruments that do not depend on the included variables Xi, strong exclusion also ensures that

the researcher’s estimate of α can remain reliable even if the researcher has badly misspecified how

the included variables Xi shift the model residual. Using too few instruments that are unrelated

to Xi means that the researcher’s estimate of α is instead affected by misspecification of how the

included variables Xi shift the model residual. Using too many instruments that are functionally

dependent on Xi has the same effect. We turn next to formalizing these intuitions.
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4.2 Approximately Correct GMM Estimation of Causal Summaries

To study the effect of strong exclusion on the performance of the researcher’s estimator, we adopt

a definition of performance motivated by our study of the oracle estimator in Section 3.

Definition 5. An estimator with estimand θ∗ (G) is approximately causally consistent if, for any

bound b > 0 on the error, there exists some bound δ > 0 on the distance from causally correct

specification such that |τ ∗ (θ∗) − τ (G)| ≤ b for all causal summaries τ ∈ T whenever δ (G) ≤ δ.

That is, an estimator with estimand θ∗ (G) is approximately causally consistent over G if for

any b > 0, there exists δ̄ > 0 such that

sup
{G∈G:δ(G)≤δ}

sup
τ∈T

|τ ∗ (θ∗ (G)) − τ (G)| ≤ b.

Approximate causal consistency requires that, when the researcher’s model of the causal effect of

Di on Yi is approximately correct, so are the researcher’s conclusions about casual summaries.

Proposition 1 in Section 3 establishes that there is always a (possibly infeasible) oracle estima-

tor that is approximately causally consistent. Proposition 1 also establishes that even an infeasible

oracle estimator cannot guarantee a small error |τ ∗ (θ∗) − τ (G)| without a bound on the distance

from causally correct specification δ (G). In this sense, approximate causal consistency seems like

the best one can hope for from a feasible estimator. Because θ∗ (G) is the population analog of

a generalized minimum distance estimator (see, e.g., Newey and McFadden 1994, Section 1), ap-

proximate causal consistency will imply asymptotic bias bounds for corresponding finite-sample

estimators under mild regularity conditions (see, e.g., Theorem 2.1 of Newey and McFadden 1994).

The next proposition shows that a (feasible) GMM estimator is approximately causally con-

sistent if and only if it satisfies strong exclusion. Because this result concerns the behavior of

the researcher’s estimand when the researcher’s model holds approximately, it requires additional

regularity conditions. Most importantly, we assume that α is strongly identified by the mean-

independent instruments fE
G (Xi, Zi), in the sense that moment conditions formed using these in-

struments are far from zero when α is far from the researcher’s estimand. Strong identification

rules out, for example, that there are multiple solutions to the moment equations, or that small

changes in the distribution of the data lead to large changes in the estimand. The condition there-

fore sets aside issues of weak identification that have been the subject of a large literature and that

are distinct from the issues of misspecification that are our focus here.
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Definition 6. (Strong identification.) Under strong exclusion, α is strongly identified by the

mean-independent instruments if the moment conditions formed using these instruments hold

approximately only in a neighborhood of the researcher’s estimand. That is, the parameter α is

strongly identified by fE
G (Xi, Zi) if and only if, for any ε > 0, there exists δ > 0 such that for all

G ∈ G and any α, β

∥∥∥EG

[
fE

G (Xi, Zi) R∗ (Yi, Di, Xi; α, β)
]∥∥∥ =

∥∥∥EG

[
fE

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α)
]∥∥∥ ≤ δ

only if ∥α − α∗ (G)∥ ≤ ε.

Example. (Linear model, continued.) Strong identification by the mean-independent instruments

holds when the first-stage coefficient from regressing Di on Zi − E [Zi|Xi] is bounded away from

zero.

Using strong identification and additional regularity conditions (specifically, Assumptions 3

and 4 in Appendix A.3) we obtain the following result.

Proposition 3. If conditional exogeneity holds, then any estimator satisfying strong exclusion and

strong identification is approximately causally consistent.

Moreover, even if unconditional exogeneity holds, any estimator that is approximately causally

consistent must satisfy strong exclusion.

Proposition 3 states that strong exclusion is both necessary and sufficient for approximately correct

specification to guarantee approximately correct conclusions. Notice that, absent strong exclusion,

approximate causal consistency fails even under unconditional exogeneity, in which case the in-

cluded variables Xi are themselves exogenous. Proposition 3 therefore shows that the importance

of strong exclusion does not hinge on the researcher being concerned about the endogeneity of the

included variables.

We can interpret Proposition 3 in a familiar example.

Example. (Logit model, continued.) For simplicity again say that the product characteristic

Xi,j is a scalar. A choice of instruments in the spirit of Berry, Levinsohn, and Pakes (1995) is

fj (Xi, Zi) =
(
Xi,j, X i,−j

)
where X i,−j is the average of the characteristic Xi,j for products in

market i other than product j. These instruments do not satisfy strong exclusion. Intuitively, if the

true mean utility contains a function of Xi other than Xi,jβ, the estimated price coefficient α must
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adjust to compensate. As a result, misspecification of the way Xi,j affects mean utility can affect

the estimated price coefficient.

An alternative choice of instruments might be fj (Xi, Zi) = (Xi,j, Zi,j) where Zi,j is the cost

shifter for product j. If Zi,j is mean-independent of Xi, then the estimated price coefficient α

solves a moment condition that is unrelated to Xi and therefore insensitive to misspecification

of the functional role of Xi,j in the equation for mean utility. Notice that, in this multivariate

setting, mean-independence requires that Zi,j be mean-independent of Xi rather than only of Xi,j .

Intuitively, if the cost shifter Zi,j for product j is, say, correlated with the characteristics Xi,j′ of

product j′, then misspecification of the way that Xi,j′ affects the preference for product j′ can

influence the behavior of the estimated price coefficient α.

As the distance δ (G) from causally correct specification shrinks, the true DGP is closer to

one with substitution patterns governed by the logit model. Under strong exclusion, this ensures

approximately correct estimates of causal effects of Di on Yi. Absent strong exclusion, it does not.

4.3 Trading off Restrictions on Misspecification with Restrictions on Causal Summaries

We have focused our analysis on the situation of a researcher who is potentially interested in the

full set of causal summaries T . A researcher interested in a subset of causal summaries may hope

to achieve good performance under weaker conditions. Here we consider that possibility.

Our first result in this section is that, absent strong exclusion, approximate causal consistency

fails even for a fairly narrow class of causal summaries. To see this, we introduce the following

definition.

Definition 7. A class of causal summaries T ′ ⊆ T is α−sensitive if for any α ̸= α′, and any

β,β′, there exists a target τ ∈ T ′ whose model-implied counterpart differs at θ = (α, β) and

θ′ = (α′, β′), τ ∗ (θ) ̸= τ ∗ (θ′).

An α−sensitive class of causal summaries is one whose model-implied counterparts depend on the

parameter α. The class of α−sensitive causal summaries includes many parameters of economic

interest in leading applications.

Example. (Linear model, continued.) Any causal summary that positively weights all partial

derivatives of Yi with respect to Di is α−sensitive.
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Example. (Logit model, continued.) Because any partial derivative of Yi with respect to Di de-

pends on α, any positively weighted average of a particular own-price or cross-price elasticity is

α−sensitive.

Remark 5. The conclusions of Proposition 3 hold for any α-sensitive set of causal summaries

T ′ (see Appendix A.4). As a result, the practical takeaways of Proposition 3 apply as long as

the researcher is interested in causal summaries whose model-implied counterparts depend on the

parameter α.

Our second result in this section is that, under strong exclusion, an interpretable tradeoff arises

between restrictions on the causal summaries considered and restrictions on the degree of misspec-

ification. Proposition 5 in Appendix B shows that, under strong exclusion, for any DGP G, there

is a set T ∗ ⊆ T of causal summaries that the researcher can estimate correctly regardless of the

distance from causally correct specification.13 For any causal summary τ ∈ T , including those not

in T ∗, Corollary 2 in Appendix B shows that the bound δ on the distance from causally correct

specification needed to achieve a given bound b on the error of an estimator satisfying strong ex-

clusion grows in proportion to the distance (i.e., difference in weights) between τ and the closest

member of T ∗. In this sense, under strong exclusion, the requirement of approximately causally

correct specification becomes more demanding the further is a given causal summary τ from one

that the researcher is guaranteed to estimate correctly. Appendix Figure 2 illustrates this idea,

which connects to well-known ideas in the literature on linear instrumental variables models.

Example. (Linear model, continued.) Our characterization of the causal summaries in T ∗ gen-

eralizes the well-known finding that a researcher estimating a linear model via IV methods can

reliably recover a local average treatment effect (LATE) even if the model is badly misspecified

(Imbens and Angrist 1994; Angrist and Imbens 1995). Specifically, suppose that the instruments

are (Xi, Zi) and that EG [Zi|Xi] = 0 so that strong exclusion holds. Then if Di (Xi, z) is monotone

in fE
G (Xi, z) for all i, any causal summary τ ∗ ∈ T ∗ is proportional to a LATE characterized in

Angrist, Graddy, and Imbens (2000).

When the linear model is misspecified researchers estimating linear models may fail to recover

other causal summaries of interest (see, e.g., Heckman and Vytlacil 2005). Our results imply
13This is true despite the fact that the weights dωi,j,j′ (·) for the causal summaries in T ∗ depend only on(

Yi (·) , Di (·) , Xi, Zi, θ∗ (G) , fE
G (Xi, Zi)

)
. Appendix B gives conditions—including separability of the resid-

ual function as in our running examples—under which strong exclusion ensures that the class T ∗ is α−sensitive.
Appendix A.3 shows, by contrast, that when strong exclusion fails, there is no α−sensitive class of targets that the
researcher estimates correctly regardless of the distance from causally correct specification.
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that the extent of the researcher’s error depends on the distance of the causal summary of interest

from the LATE. Specifically, Corollary 3 in Appendix B implies a bound on the researcher’s error

|τ ∗ (θ∗ (G)) − τ (G)| for any target τ /∈ T ∗ that is proportional to the product of the distance from

correct specification δ (G) and the distance of the weights in τ from those of the LATE.

4.4 Enforcing Strong Exclusion in Practice

In light of the preceding results, we recommend that practitioners enforce strong exclusion when

possible. Here we discuss how a practitioner may do this. We suppose that the practitioner has

selected some initial instruments f̂ (Xi, Zi) and weights Ω̂ that do not necessarily enforce strong

exclusion.

A direct procedure for enforcing strong exclusion is to set aside exactly dim (β) rows of

f̂ (Xi, Zi), and to flexibly residualize the remaining rows with respect to Xi so that they are mean-

independent of Xi. If the resulting estimator is well-defined, then it satisfies strong exclusion.

Intuitively, this procedure ensures that the parameters α are pinned down by moment conditions

that do not depend on Xi, while allowing the parameters β to be pinned down by moment con-

ditions that do depend on Xi. This intuition is particularly clear in the case of a just-identified

estimator, but extends to an over-identified estimator as well. Of course, in order for this procedure

to yield a well-defined estimator, there must be at least dim (α) rows of f̂ (Xi, Zi) that depend on

Zi. Appendix C.3 discusses estimation and inference under this direct procedure.

In many situations we expect it will be intuitive how to select the rows of f̂ (Xi, Zi) that are

allowed to depend on Xi. For example, in the case of a differentiated goods demand model in

which some function L∗∗
j (Xi,j) of the product characteristics Xi,j enters mean utility linearly,

so L∗∗
j (Xi; β) = L∗∗

j (Xi,j) β, it is common in practice to include the function L∗∗
j (Xi,j) in the

instruments f̂ (Xi, Zi). As this function must conform with β, its dimension is exactly dim (β),
and it seems natural to exclude it from residualization. We illustrate this situation in our application

below.

In other situations researchers may wish to have an automated procedure that does not require

making an intentional choice of which instruments to residualize. For such situations, Appendix

C.4 offers a recipe for enforcing strong exclusion. The recipe takes the form of a nested loop

optimization procedure, where moment conditions in the outer loop, which may depend on Xi, pin

down the parameters β, and moment conditions in the inner loop, which depend on residualized

instruments, pin down the parameters α. We illustrate this procedure in our application below.
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A distinct practical consideration—which arises even in linear models (Blandhol et al. 2022)—

is that when Xi is rich, it can be difficult to flexibly residualize functions of Zi with respect to Xi

while still maintaining identifying power. We discuss this and other related practical considerations

in the context of our application, to which we turn next.

5 Implementation and Application to the Demand for Beer

To illustrate how to enforce strong exclusion, and why it matters, we develop an application to

the demand for beer. We base our data and simulations on the work of Miller and Weinberg

(2017, henceforth MW).14 In this setting, an observation i is a market, defined as a region-month.

The outcome, Yi ∈ RJ , is the vector of market shares of J = 39 different beer products. The

endogenous variable, Di ∈ RJ , is the vector of prices of these products. The matrix Xi encodes

the set Ji of products available in market i, the month of the year of market i, and an indicator for

whether market i has high income.

We begin with a simple case, modeled on one of our running examples, in which the researcher

specifies a logit model, and where we vary the true DGP from the one specified by the researcher

towards one closer to that estimated by MW. We illustrate how to enforce strong exclusion and

how it affects the reliability of the researcher’s economic conclusions. Although these simulations

do not explore the full range of DGPs covered by our theoretical results, they serve to illustrate the

importance of the issues we study in an economically realistic setting.

We then elaborate the setting to consider both the possibility that the covariates are too rich

to allow full residualization, and the possibility that the researcher wishes to estimate a richer

model that includes random coefficients. These elaborations allow us to illustrate the practical

considerations that we highlighted in Section 4.4.

5.1 Researcher’s Model and Default Estimator

Following one of our running examples, we imagine a researcher who specifies the mean utility

for product j in market i as linear and separable in price and other characteristics,

ln Y ∗
j (Di, Xi, ξi; θ) − ln Y ∗

0 (Di, Xi, ξi; θ) = αDi,j + Xi,jβ + ξi,j,

14We focus on the specification that MW report in column (ii) of their Tables IV and VI, which we re-estimate using
MW’s original code and data. Data on the beer market are from the IRI Academic Database (Bronnenberg, Kruger,
and Mela 2008). Data on income in each region-year is from the American Community Survey.
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where Xij includes indicators for the brand associated with product j, the month of the year asso-

ciated with market i, and for whether the market i is high income. The researcher estimates their

model via two-stage least squares, which is a special case of the GMM setup in Section 4. Follow-

ing common practice (and MW), the researcher includes in their initial instruments f̂j (Xi, Zi) the

brand indicators, month indicators, and income indicator that directly enter the mean utility. There

are dim (β) = 25 of these indicators, corresponding to 13 brand indicators, 11 month indicators,

and 1 income indicator.

Because the researcher is concerned about price endogeneity, the researcher also wishes to

include in f̂j (Xi, Zi) some instruments that do not enter the mean utility function directly but

are nevertheless relevant for prices. We follow MW and include in f̂j (Xi, Zi) a set of variables

fMW
j (Xi, Zi) that can serve in this role.15 The variables fMW

j (Xi, Zi) include functions of ex-

cluded variables Zi, such as the cost and ownership structure of the products, which affect pricing

(via firms’ incentives) but do not directly affect consumer demand. The variables fMW
j (Xi, Zi)

also include functions of included variables Xi, such as the number of available products in the

market, which do not enter the researcher’s specification of mean utility but do causally affect

market shares. MW select these instruments to estimate their (richer) model; we select the same

instruments to discipline our simulation design.

5.2 Enforcing Strong Exclusion

Following the recipe in Section 4.4, to enforce strong exclusion in this case, it suffices to residualize

the instruments fMW
j (Xi, Zi) with respect to the included variables Xi, leaving the remaining

dim (β) instruments unchanged. To describe the residualization, define the function f
MW

j (x) that

returns the average of fMW
j (Xi, Zi) across all observations in the dataset with Xi = x.16 We can

then let

fMW,E
j (Xi, Zi) = fMW

j (Xi, Zi) − f
MW

j (Xi)
15For a given product j, fMW

j (Xi, Zi) contains (i) the product of the distance to the owner’s closest brewery and the
prevailing price of diesel fuel (a function of Zi), (ii) an indicator for whether the product is part of a merged entity
(a function of Zi), (iii) the number |Ji| of products in the market (a function of Xi), (iv) the product of (iii) and
ownership indicators (a function of Xi and Zi), (v) the sum of distances to the owner’s closest brewery over available
products Ji (a function of Xi and Zi), (vi) the products of (v) and ownership indicators (a function of Xi and Zi),
and (vii) the products of mean income in market i with a constant and with the number of calories in the product (a
function of Xi).

16That is,

f
MW (x) =

∑
i:Xi=x fMW (Xi, Zi)

|{i : Xi = x}|
for any x ∈ X .
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denote a residualized version of MW’s instruments that, by construction, has zero mean within

each covariate cell. If we replace fMW
j (Xi, Zi) with fMW,E

j (Xi, Zi), we have enforced strong

exclusion.

5.3 DGP and Comparison Estimators

We simulate from a potential outcome model denoted by Y SIM
i (Di, Xi, γ). Here, γ is a parameter

that controls the degree of misspecification of the researcher’s model. When γ = 0, the researcher’s

model is correctly specified, Y ∗
i (d, Xi) = Y SIM

i (d, Xi, 0). As γ departs from 0, the DGP becomes

closer to the one specified by MW, and therefore further from the one specified by the researcher.

We allow Y SIM
i (Di, Xi, γ) to capture two dimensions in which MW’s model departs from the

researcher’s model. The first is the presence of product rather than brand fixed effects. Departures

in this direction do not increase the distance from causally correct specification, as they entail

misspecification only of the way the included variables Xi enter the mean utility. The second is

the presence of random coefficients and a nested logit structure. Departures in this direction imply

increases in the distance from causally correct specification, because they imply that the researcher

has misspecified how prices Di affect market shares Yi. Appendix E.1 provides additional details

on how we generate simulated data.

To measure the degree of misspecification of the mean utility, for each value of γ, we calculate,

over all values of the researcher’s parameter θ, the least possible root mean squared difference

between the effect of the covariates Xi on market shares Yi implied by the researcher’s model, and

those prescribed by the DGP. To measure the degree of misspecification of substitution patterns, for

each value of γ, we calculate the least possible root mean squared difference between the effect of

prices Di on market shares Yi implied by the researcher’s model, and those prescribed by the DGP.

This latter quantity is formally a lower bound on the distance from causally correct specification.

We measure effects in whole percentage points, so that a misspecification value of 0.1 means that,

across all possible parameters θ, the researcher’s model can, at best, approximate the true causal

effects in the model with a root mean squared difference of 0.1 percentage points. Appendix E.2

provides additional details on how we define and calculate these measures of misspecification.

We compare the estimator that satisfies strong exclusion to a baseline estimator that uses

fMW
j (Xi, Zi) in place of fMW,E

j (Xi, Zi). This estimator is a relevant comparison because of the

popularity of instruments that depend on included variables. To aid interpretation of magnitudes,
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we also report estimates of the endogeneity bias under correct specification.17

5.4 Estimation Error Under Alternative Estimators

We focus on recovery of the average own-price elasticity, which is a target of economic interest in

MW’s setting, and which is frequently used to measure or contrast the performance of estimators

of models of differentiated goods demand.18 We focus on the median bias as a finite-sample

counterpart of the error.

Panel A of Figure 2 shows the median bias when the only departure from the researcher’s

model is the presence of product, rather than brand, indicators in the mean utility. As we move

along the x-axis of the plot, we increase the importance of the product indicators in the true DGP,

leaving the researcher’s model and estimator unchanged. Following Section 3.3, because the only

form of misspecification here is in the way that the included variables enter the mean utility, all

of the DGPs we consider in this plot satisfy causally correct specification. Following Proposition

3, we therefore expect the estimator that enforces strong exclusion to perform well throughout.

By contrast, we expect the baseline estimator to perform poorly as the true DGP departs from the

researcher’s model.

Panel A shows that these expectations are borne out in the simulations. As the degree of

misspecification of the mean utility grows large, the strongly excluded estimator remains approxi-

mately median-unbiased, whereas the baseline estimator becomes severely median biased. Under

the most severe form of misspecification we consider, the researcher’s model is off by a bit more

than 0.4 percentage points, on average, in describing the causal effects of the covariates Xi on

market shares. Under this degree of misspecification, the median bias of the baseline estimator is

larger than the endogeneity bias under correct specification.

Panel B of Figure 2 shows the median bias when we allow random coefficients and a nested

logit structure, in addition to the presence of product, rather than brand, indicators in the mean

utility. As we move along the x-axis of the plot, we maintain the degree of misspecification of mean

utility, but we increase the importance of the random coefficients and nesting structure in the true

DGP, so that the distance from causally correct specification grows larger. Following Proposition 3,

17We obtain these estimates by maintaining correct specification of the researcher’s model (γ = 0) but using Dij

in place of fMW
j (Xi, Zi) in constructing the researcher’s estimator. Because the DGP we use incorporates an

economic model of equilibrium pricing, prices are endogenous to the potential outcomes Y MW
i (·), and we expect

this endogeneity to lead to systematic misestimation of causal summaries.
18See, for example, Ackerberg and Rysman (2005), Gandhi, Lu, and Shi (2023), Head and Mayer (forthcoming), and

Birchall, Mohapatra, and Verboven (forthcoming).
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we expect that no estimator will perform well when the distance from causally correct specification

is sufficiently large. However, following Proposition 1, we expect the strongly excluded estimator

to perform well, and to outperform the baseline estimator, when the distance from causally correct

specification is not too large.

Panel B shows that these expectations are borne out in the simulations. As the distance from

causally correct specification grows small, only the strongly excluded estimator becomes approx-

imately median unbiased. The baseline estimator remains severely median biased for all DGPs.19

The median bias of the baseline estimator is uniformly larger than the endogeneity bias under

correct specification. Under the most severe form of misspecification that we consider, the re-

searcher’s model is off by a bit more than 0.009 percentage points, on average, in describing the

causal effects of the prices Di on the market shares Yi.20 Under this degree of misspecification,

neither estimator performs well, and the median bias of the strongly excluded estimator is slightly

larger than that of the baseline estimator.

5.5 Trading off Bias and Precision by Coarsening Covariates

Our approach to ensuring mean independence enforces that the instruments fMW,E
j (Xi, Zi) have

exactly mean zero for each value of Xi. In practice, this may reduce the identifying power of the

instruments, inducing a tradeoff between approximate causal consistency and estimator variance.

We can measure this tradeoff by looking at the median absolute error of the alternative estimators,

as the median absolute error reflects both bias and dispersion.

Panel A of Appendix Figure 3 shows that, under causally correct specification, strong exclusion

increases the median absolute error when the mean utility is close to correctly specified, but reduces

it otherwise. The reason is that the median absolute error, though sensitive to dispersion, becomes

dominated by the bias when the mean utility is meaningfully misspecified. Along similar lines,

Panel B of Appendix Figure 3 shows that, when we maintain misspecification of the mean utility

but vary the distance from causally correct specification, strong exclusion reduces the median

absolute error over most of the range of specifications we consider. Under these designs, then,

a concern with median absolute error motivates a preference for the strongly excluded estimator

19In this design, the median bias of the baseline estimator is fairly insensitive to the distance from causally correct
specification, though we know of no general reason to expect that behavior under other DGPs.

20Intuitively, this value is smaller than its counterpart in Panel A because, in the DGPs we consider, the partial effects
on market shares of characteristics such as brand tend to be larger than the partial derivatives of market shares with
respect to prices.
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unless the researcher is very confident in the correct specification of the mean utility.

In other applications, the included variables Xi may be rich enough that it is not practical to

achieve full mean independence. Suppose that a researcher instead enforces mean-independence

with respect to a coarsening χ (Xi) of Xi, and linearly residualizes against the functions of Xi

that appear in the residual function.21 Then Proposition 6 in Appendix C.2 shows that the resulting

estimator will perform well as long as any misspecification in the mean utility is spanned by χ (Xi).
Thus, coarsening the included variables compromises some, but not all, of the attractive properties

of strong exclusion.

To illustrate these ideas, Panel A of Figure 3 shows the median bias for an estimate of the av-

erage own-price elasticity when the researcher enforces mean-independence only with respect to

product availability Ji, so that χ (Xi) indexes possible values of Ji. Because the misspecification

of mean utility concerns the product fixed effects, this step is sufficient to ensure good perfor-

mance, despite not fully enforcing strong exclusion. Panel B of Figure 3 shows that, as expected,

the coarsely residualized estimator that residualizes instruments with respect to χ (Xi) is approxi-

mately median unbiased close to causally correct specification. Appendix Figure 3 further shows

that, also as expected, under causally correct specification the estimator that coarsens the covari-

ates tends to achieve a lower median absolute error than the one that enforces strong exclusion,

because there is more variation left in the instruments when we residualize only with respect to the

coarsened covariates.

Of course, how best to coarsen depends on how the mean utility is misspecified. Panel C of

Figure 3 illustrates this by showing the median bias when we use the same form of residualiza-

tion as in Panels A and B, but allow a different form of misspecification of the mean utility. In

particular, we suppose here that, in addition to including brand rather than product indicators in

their model, the researcher mistakenly neglects to allow mean utility to differ by month of the year.

The estimator based on coarsely residualized instruments now exhibits a modest median bias even

under causally correct specification.

Proposition 3 shows that only by enforcing strong exclusion can the researcher ensure approxi-

mate causal consistency regardless of how the mean utility is misspecified. That said, in any given

application, some forms of misspecification seem likely to be more important than others. For

example, in a differentiated goods demand setting such as MW’s, it seems intuitive that the choice

21In the leading case where the researcher’s chosen instruments include L∗∗
j (Xi,j), the required orthogonality holds

automatically when the GMM system is just identified or when, as in MW’s implementation, the researcher’s esti-
mator ensures that the moments involving L∗∗

j (Xi,j) are solved exactly.
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set has a large effect on market shares, and that any particular model may not describe this rela-

tionship perfectly. In this sense, enforcing strong exclusion with respect to product availability Ji,

as in Figure 3, seems appealing. It is not possible to enforce coarse exclusion in this sense if the

chosen instruments are a function only of the set of available products and their characteristics.

That is the case of the most popular type of instruments used in estimating differentiated goods

demand models (Gandhi and Nevo 2021, p. 92).

Our DGP features discrete included variables Xi. In such cases, a standard bootstrap suffices

for inference even under misspecification (Hall and Inoue 2003; Lee 2014). In some applications,

the included variables may be naturally continuous, in which case the researcher may wish to

residualize against flexible transformations of the included variables or use some nonparametric

regression procedure to achieve mean-independence. In this case, Appendix C.3 shows that the

researcher’s estimator can be characterized as a two-step GMM estimator, so that existing results

(e.g., Ai and Chen 2007) can be applied to conduct inference.

5.6 Enforcing Strong Exclusion with More General Estimators

Our researcher’s estimator is a logit model, which means that the parameter α, which governs

effects beyond those of the covariates on the mean utility, is a scalar. Our researcher might alter-

natively wish to use a richer model, for example one allowing for random coefficients on product

characteristics, as MW do. In that case, the parameter α will be a vector that includes terms con-

trolling the importance of the random coefficients. Intuitively, the greater is the dimension of α,

the greater is the reliance on the residualized instruments, and the more likely is residualization

to compromise the instruments’ identifying power. In such situations, it is possible to adapt the

automated recipe discussed in Section 4.4 (and detailed in Appendix C.4) to use the residualized

instruments to pin down only a subset of the parameters in α. Proposition 5 in Appendix B shows

that, in this case, the researcher can still guarantee recovery of some causal summary, analogous

to the results for strong exclusion in Section 4.3. Though in this case approximate causal consis-

tency is no longer guaranteed, it seems plausible that the estimator will perform acceptably under

approximate causally correct specification in some realistic situations.

Figure 4 shows that this is the case in our application. To build the figure, we modify the

researcher’s estimator to include random coefficients on two product characteristics—the beer’s

calorie content and a constant. We imagine the researcher applies the recipe in Appendix C.4, but

requires only the price coefficient, and not the other parameters in α, to solve a moment condition

36



that depends on the residualized instruments fMW,E (Xi, Zi). Figure 4 shows that, when the mean

utility is misspecified, the estimator that uses the residualized instruments to estimate the price

coefficient exhibits smaller median bias than the baseline estimator. Intuitively, requiring that

the price coefficient solve a moment condition that does not depend on the included covariates

Xi allows reliable conclusions about the mean own-price elasticity even when the role of these

covariates is misspecified.22

If our researcher were concerned about misspecification, an alternative to adding additional

parametric elements such as random coefficients might be to adopt a nonparametric model of

demand. When feasible such approaches seem appealing given our emphasis on the possibility

of misspecification. We are, however, unaware of widely applicable nonparametric methods for

settings such as MW’s that feature many products. In a setting with J = 39 products and no

random coefficients, estimating a demand system nonparametrically (using second-order polyno-

mials) via the method suggested by Compiani (2022)—which builds on the approach in Chen and

Christensen (2018)—requires estimating millions of parameters, which is infeasible at present.23

Approaches discussed in Chen, Chen, and Tamer (2023) likewise entail computation that becomes

more involved as the number of products grows large, and do not immediately extend to settings

with random coefficients.24 Sensitivity analysis such as that proposed in Christensen and Con-

nault (2023) requires specifying a parametric model for the unobservable ξ, which is not done in

MW, and focusing on a particular causal question of interest. We think these considerations may

help to explain the enduring popularity of the workflow we introduce at the start of the paper,

which uses a single estimate of a tightly parameterized structural model to estimate a wide range

of economically interesting quantities.

6 Conclusion

When a researcher has access to excluded, exogenous variables, it is often possible to ensure

strong exclusion. Strong exclusion in turn guarantees that the researcher’s conclusions about causal

summaries will remain approximately correct provided that the researcher’s model is sufficiently

flexible. Failure of strong exclusion removes this guarantee and can lead to substantial bias in the

22We can also observe (in Panel B) that the distance from causally correct specification is lower in this case than when
the researcher uses a logit model, reflecting the greater flexibility of the model with random coefficients.

23Under exchangeability the number of parameters is
[

(J+1)!
(J−1)!(2)! 3

]2
≈ 5 × 106.

24Chen, Chen, and Tamer (2023) note that theirs is the first paper to report nonparametric estimates of causal effects
of an endogenous variable on a J−dimensional outcome variable with J > 5.
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estimation of economically interesting targets in realistic settings.

When a researcher has access to excluded, exogenous variables, we recommend that the re-

searcher choose their instruments and estimator to ensure strong exclusion. When a researcher

does not have access to such variables, we recommend that the researcher make explicit that their

estimator fails to satisfy strong exclusion, so that readers can better gauge the sensitivity of the

researcher’s conclusions to model misspecification.
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Figure 2: Estimates of the average own-price elasticity, with and without strong exclusion

(a) Varying the misspecification of mean utility, under causally correct specifica-
tion
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(b) Varying the distance from causally correct specification, with a misspecified
model of mean utility
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Note: The plots report the estimated median bias for different estimators of the mean own-price elasticity.
In Panel A, we maintain causally correct specification, and vary the misspecification of mean utility along
the x-axis. The x-axis displays the least possible root mean squared difference between the effect of the
covariates Xi on market shares Yi prescribed by the DGP, and those implied by the researcher’s model (see
Appendix E.2). In Panel B, we maintain a constant degree of misspecification of mean utility, but allow
the distance from causally correct specification to vary. The x-axis displays the least possible root mean
squared difference between the effect of prices Di on market shares Yi prescribed by the DGP, and those
implied by the researcher’s model; this is a lower bound on the distance from causally correct specification
(see Appendix E.2). In both panels, the y-axis depicts the median bias across 100 simulation replicates,
along with 95 percent confidence intervals (when visible). The dashed horizontal line reflects the median
bias under exactly correct specification when the researcher ignores endogeneity.
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Figure 4: Estimates of the average own-price elasticity, nonlinear estimator

(a) Varying the misspecification of mean utility, under causally correct specifica-
tion
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(b) Varying the distance from causally correct specification, with a misspecified
model of mean utility
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Note: The plots report the estimated median bias for different estimators of mean own-price elasticity anal-
ogous to Figure 2. In this case, however, we replace the researcher’s logit model with a nonlinear model that
includes random coefficients on product characteristics. In Panel A, we maintain causally correct specifica-
tion, and vary the misspecification of mean utility along the x-axis. The x-axis displays the least possible
root mean squared difference between the effect of the covariates Xi on market shares Yi prescribed by the
DGP, and those implied by the researcher’s model (see Appendix E.2). In Panel B, we maintain a constant
degree of misspecification of mean utility, but allow the distance from causally correct specification to vary.
The x-axis displays the least possible root mean squared difference between the effect of prices Di on mar-
ket shares Yi prescribed by the DGP, and those implied by the researcher’s model; this is a lower bound on
the distance from causally correct specification (see Appendix E.2). In both panels, the y-axis depicts the
median bias across 100 simulation replicates, along with 95 percent confidence intervals (when visible).
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A Proofs for Results in Main Text

To prove our main results, we impose some additional regularity conditions. To state these condi-
tions, define (D, X , Y , Z) as sets which contain the support of (Di, Xi, Yi, Zi) respectively.

Assumption 1. (i) D, X , Z are compact subsets of Euclidian space; (ii) D and Z are con-

vex; (iii) Yi (·) is almost surely continuous in (d, x) and differentiable in d, and Di (·) is al-

most surely continuous in (x, z) and differentiable in z; and (iv) EG

[∥∥∥ ∂
∂dj

Yi,j′ (·, Xi)
∥∥∥

∞

]
and

EG

[∥∥∥ ∂
∂dj

Y ∗
i,j′ (·, Xi, ξi; θ)

∥∥∥
∞

]
are finite for all j, j′, all G ∈ G, and all θ ∈ Θ.

Let Y denote the space of continuous functions from D × X → Y , and D the space of contin-
uous functions from X × Z → D, both equipped with the sup norm. Since the set of continuous
functions on a compact Euclidian domain is complete and separable under the sup norm, Y×D×X
is a Polish space.

Recall that we consider true and model-implied causal summaries of the form

τ (G) =
∑
j,j′

EG

[∫ ∂

∂dj

Yi,j′ (d, Xi) dωi,j,j′ (d)
]

, and τ ∗ (θ) =
∑
j,j′

EG

[∫ ∂

∂dj

Y ∗
i,j′ (d, Xi, ξi (θ) ; θ) dωi,j,j′ (d)

]

respectively. It will be helpful to focus on weights that are functions only of (Yi (·) , Di (·) , Xi, Zi).
We next state two lemmas about causal summaries that are useful in proving Proposition 1.

Lemma 1. It is without loss of generality to consider causal summaries whose weights are func-

tions of (Yi (·) , Di (·) , Xi, Zi),

wi,j,j′ = ηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)

for some η.

Proof. By the law of iterated expectations,

EG

[∫ ∂

∂dj

Yi,j′ (d, Xi) dωi,j,j′ (d)
]

= EG

[∫ ∂

∂dj

Yi,j′ (d, Xi) dηj,j′ (d; Yi (·) , Xi)
]

,

for ηj,j′ (d; Yi (·) , Xi) = E [ωi,j,j′ (d) |Yi (·) , Xi] . Similarly, note that

ξi (θ) = R∗ (Yi (Di, Xi) , Di (Xi, Zi) , Xi; θ) ,

so the model-implied causal effect ∂
∂dj

Y ∗
i (d, Xi, ξi (θ) ; θ) is a function of (Yi (·) , Di (·) , Xi, Zi) .
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Hence, by the law of iterated expectations,

EG

[∫ ∂

∂dj

Y ∗
i,j′ (d, Xi, ξi (θ) ; θ) dωi,j,j′ (d)

]
=

EG

[∫ ∂

∂dj

Y ∗
i,j′ (d, Xi, ξi (θ) ; θ) dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)

]
,

for ηj,j′ (d; Yi (·) , Di (·) , Xi, Zi) = E [ωi,j,j′ (d) |Yi (·) , Di (·) , Xi, Zi]. Moreover, since
maxj,j′

∫
|dωi,j,j′ (d)| ≤ W for all i by assumption, Jensen’s inequality implies that

max
j,j′

∫
|dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)| ≤ W.

as well.

Motivated by this result, in our proofs we restrict attention to weights of the form considered
in Lemma 1. To make the dependence on the weights η and data generating process G explicit, we
write true and model-implied causal summaries as

τ (G; η) = EG

[∫ ∂

∂dj

Yi,j′ (d, Xi) dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)
]

and

τ ∗ (θ, G; η) = EG

[∫ ∂

∂dj

Y ∗
i,j′ (d, Xi, ξi (θ) ; θ) dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)

]
,

respectively.
Note that τ (G; η) and τ ∗ (θ, G; η) are linear functionals of η, where each η consists of J ×

dim (d) functions from Y × D × X to S, the space of signed measures on D. Let H denote the set
of such η’s, equipped with the norm

∥η∥H = max
j,j′

sup
(y(·),d(·),x,z)∈Y×D×X ×Z

TV (ηj,j′ (·; y (·) , d (·) , x, z))

for TV (µ (·)) the total variation of a signed measure µ (·) on D. Our assumptions imply that
τ (G; η) and τ ∗ (θ, G; η) are both bounded, and thus continuous. For B (H,R) the set of continuous
linear maps from H to R with generic element l, the operator norm of l is

∥l∥op = sup {|l (η)| : η ∈ H, ∥η∥H ≤ 1} .

B (H,R), equipped with this norm, is the (continuous) dual space to H by the Riesz-Markov
theorem. A special case of the operator norm plays an important role in our results.
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Lemma 2. For l ∈ B (H,R) of the form

l (η) =
∑
j,j′

EG

[∫
hj,j′ (d; Yi (·) , Di (·) , Xi) dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)

]
,

the operator norm is equal to
∑

j,j′ EG

[
∥hj,j′ (·; Yi (·) , Di (·) , Xi)∥∞

]
.

Proof. By definition,

∥l∥op = sup
∥η∥H≤1

∣∣∣∣∣∣
∑
j,j′

EG

[∫
hj,j′ (d; Yi (·) , Di (·) , Xi) dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)

]∣∣∣∣∣∣ .
Note that this optimization problem imposes no constraints across different values of j, j′, and that

EG

 sup
T V (ηj,j′)≤1

∫
hj,j′ (d; Yi (·) , Di (·) , Xi) dηj,j′ (d; Yi (·) , Di (·) , Xi, Zi)

 =

EG

[
∥hj,j′ (·; Yi (·) , Di (·) , Xi)∥∞

]
by the Riesz-Markov theorem. Hence,

∥l∥op =
∑
j,j′

EG

[
∥hj,j′ (·; Yi (·) , Di (·) , Xi)∥∞

]
.

A.1 Proof of Proposition 1

Our assumptions imply that we can limit attention to ∥η∥H ≤ W . The signed error τ ∗ (θ, G; η) −
τ (G; η) is an element of B (H,R), so by Lemma 2,

sup
∥η∥H≤W

|τ ∗ (θ, G; η) − τ (G; η)| = W ·
∑
j,j′

EG

[∥∥∥∥∥ ∂

∂dj′
Yi,j (·, Xi) − ∂

∂dj′
Y ∗

i,j (·, Xi, ξi (θ) ; θ)
∥∥∥∥∥

∞

]
.

Since this equation holds for all θ, it follows that

inf
θ

sup
∥η∥H≤W

|τ ∗ (θ, G; η) − τ (G; η)| =

W · inf
θ

∑
j,j′

EG

[∥∥∥∥∥ ∂

∂dj′
Yi,j (·, Xi) − ∂

∂dj′
Y ∗

i,j (·, Xi, ξi (θ) ; θ)
∥∥∥∥∥

∞

]
= W · δ (G) .
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This implies the second part of the proposition, where we may take θ̃ (G) to be any function
θ̃ : G → Θ such that

∣∣∣τ ∗
(
θ̃ (G) , G; η

)
− τ (G; η)

∣∣∣ ≤ 2 · inf
θ

sup
∥η∥H≤W

|τ ∗ (θ, G; η) − τ (G; η)| for all G ∈ G.

To prove the first part of the proposition, note that

sup
G∈G

inf
θ

sup
∥η∥H≤W

|τ ∗ (θ, G; η) − τ (G; η)| = W · sup
G∈G

δ (G) ,

so if supG∈G δ (G) is infinite, no selection of θ can ensure finite bias uniformly over η.
If we consider restricted classes of weights H′ with ηj,j′ = 0 for (j, j′) ∈ N ⊆ {1, ..., J} ×

{1, ..., dim (d)},

inf
θ

sup
η∈H′:∥η∥H≤W

|τ ∗ (θ, G; η) − τ (G; η)| = W ·inf
θ

∑
j,j′∈N

EG

[∥∥∥∥∥ ∂

∂dj′
Yi,j (·, Xi) − ∂

∂dj′
Y ∗

i,j (·, Xi, ξi (θ) ; θ)
∥∥∥∥∥

∞

]
,

so we obtain an analogous measure for the degree of misspecification where we now restrict atten-
tion to index pairs in N . 2

A.2 Proof of Proposition 2

To prove Proposition 2, we impose an additional assumption.

Assumption 2. The support of Yi (·) |Xi does not depend on Xi, δ (θ, G) is continuous in θ, and

Θ is compact.

We can now state Proposition 2 more precisely.

Proposition. Under Assumptions 1 and 2, causally correct specification holds if and only if, under

the true DGP G, there is some value α0 such that

Yi (d, x) = Y ∗∗ (d, x, ξi + Li (x) ; α0)

for some (possibly unknown) unit-specific function Li (x), and some residual ξi ∈ RJ .

We now prove Proposition 2. We first note that if the potential outcomes take the form stated
in the proposition, then for ξi (α0) = R∗∗ (Yi, Di, Xi; α0) = ξi + Li (Xi) ,

Yi (d, Xi) = Y ∗∗ (d, Xi, ξi (α0) ; α0) for all d almost surely. (3)
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Consequently, with probability one

∂

∂d
Yi (d, Xi) = ∂

∂d
Y ∗∗ (d, Xi, ξi (α0) ; α0) for all d, (4)

and causally correct specification holds.
For the second part of the proposition, note that since δ (θ, G) is continuous in θ and Θ is

compact, causally correct specification holds if and only if there exists θ0 such that δ (θ0, G) = 0.

The definition of δ (θ0, G) implies that (4) holds with probability one when δ (θ0, G) = 0. By
the definition of the residual function, Y ∗ (Di, Xi, ξi (θ0) ; θ0) = Yi (Di, Xi) in this case. By the
convexity of D and the fundamental theorem of calculus

Yi (d, Xi) = Yi (Di, Xi) +
∫ 1

0

∂

∂d
Yi (Di + t · (d − Di) , Xi) (d − Di) dt,

so (4) implies (3). Since the residual function is the inverse of Y ∗, it follows that the residual is
constant in d,

R∗ (Yi (d, Xi) , d, Xi; θ0) = R∗ (Yi (d′, Xi) , d′, Xi; θ0) for all d, d′ almost surely,

and hence that we get the same residual (and the same model-implied potential outcomes) if we
work with the residual at a fixed d0. To make the dependence on x explicit, we now write the
residual as

ξi (x; θ0) = R∗ (Yi (d0, x) , d0, x; θ0) .

Since we now assume the support of Yi (·) is independent of Xi, (3) holds if and only if

Yi (d, x) = Y ∗ (d, x, ξi (x; θ0) ; θ0) for all d and almost every x almost surely.

Since ξi (x; θ0) may differ from ξi, let Li (x) = ξi (x; θ0) − ξi. We have shown that

Yi (d, x) = Y ∗ (d, x, ξi + Li (x) ; θ0) for all d and almost every x almost surely.

Note, however, that

Y ∗ (d, x, ξi + Li (x) ; θ0) = Y ∗∗ (d, x, ξi − L (x; β0) + Li (x) ; α0) ,

where we can absorb −L (x; β0) into Li (x) to obtain the desired expression. 2
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A.3 Preliminaries for Proposition 3

To prove Proposition 3 we impose additional assumptions.

Assumption 3. Θ is compact, and δ (θ, G) is continuous in θ. fE
G (x, z) R∗∗ (y, d, x; α) is uniformly

Lipschitz in y, in the sense that

sup
y,y′,d,x,z,α,G

∥∥∥fE
G (x, z) (R∗∗ (y, d, x; α) − R∗∗ (y′, d, x; α))

∥∥∥ ≤ ρ · ∥y − y′∥

for some ρ ∈ R, while ∂
∂d

Y ∗∗
i (d, x, R∗∗ (y, d, x; α) ; α) is uniformly continuous in α,

sup
α,α′,y,d,x

∥∥∥∥∥ ∂

∂d
Y ∗∗

i (d, x, R∗∗ (y, d, x; α) ; α) − ∂

∂d
Y ∗∗

i (d, x, R∗∗ (y, d, x; α′) ; α′)
∥∥∥∥∥ ≤ κ (∥α − α′∥)

where κ (∥α − α′∥) → 0 as ∥α − α′∥ → 0.

Assumption 4. The set of data generating processes G contains some data generating process

G0 such that (i) the researcher’s model is correctly specified, with true parameter value θ0, (ii)
∂
∂θ

EG0

[
f ∗

G0 (Xi, Zi) R∗ (Yi, Di, Xi; θ0)
]

has full rank, (iii) for h : X → RJ and
∫

∥h (x)∥2 dG (x) <

∞, the data generating process Gh
t that replaces Yi (d, x) by

Y t·h
i (d, x) = Y ∗

i (d, x, R∗ (Yi (d, x) , d, x; θ0) + t · h (x) ; θ0)

is also in G for t sufficiently small, (iv) f ∗
Gh

t
(Xi, Zi) is Gateaux differentiable at G0 with

∂

∂t
EGh

0

[
f ∗

Gh
0

(Xi, Zi) R∗ (Yi, Di, Xi; θ0)
]

=

EG0

[
∂

∂t
f ∗

Gh
0

(Xi, Zi) R∗ (Yi, Di, Xi; θ0) + f ∗
G0 (Xi, Zi)

∂

∂t
R∗
(
Y 0·t

i , Di, Xi; θ0
)]

,

(v) for all α ̸= α0 and G ∈ G,

EG [VarG ([R∗∗ (Yi, Di, Xi; α) − R∗∗ (Yi, Di, Xi; α0) |Xi, Zi] |Xi)] ̸= 0.

We also provide a more formal definition of an α-sensitive class of causal summaries.

Definition 8. A class of causal summaries T ′ =
{
τ ∗ (·, G; η) : η ∈ H′

}
is α-sensitive if for any

α ̸= α′, any β,β′, and any data generating process G ∈ G, there exists a target τ ∈ T ′ such that
τ ∗ (θ) ̸= τ ∗ (θ′) for θ = (α, β) and θ′ = (α′, β′) .

We next prove a variant of Proposition 3:
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Proposition 4. If conditional exogeneity holds, then any estimator satisfying strong exclusion and

strong identification is approximately causally consistent under Assumptions 1 and 3. Moreover,

even if unconditional exogeneity holds, under Assumption 4 any estimator that is approximately

causally consistent over a class of α-sensitive causal summaries, i.e., whose estimand θ∗ (·) satis-

fies

lim
δ(G)→0

sup
η∈H′

|τ (G; η) − τ (θ∗ (G) , G; η)| = 0,

must satisfy strong exclusion.

Corollary 1. The conditions of Proposition 4 imply Proposition 3.

A.4 Proof of Proposition 4

To prove the first part of the result, note that as argued in the proof of Proposition 2, under each G

there exists some θ that attains δ (G). Denote this value by θ (G). Let us pick a fixed value d ∈ D,
and define Y i (d, Xi) as the model-implied potential outcome when we compute the residuals at
(d, Xi), ξ

i
= R∗ (Yi (d, Xi) , d, Xi; θ (G)) ,

Y i (d, Xi) = Y ∗
i

(
d, Xi, ξ

i
; θ (G)

)
.

Consider the difference between Y i and the true potential outcome Yi, and note that by the funda-
mental theorem of calculus ∣∣∣Yi,j (·, Xi) − Y i,j (·, Xi)

∣∣∣ =∣∣∣∣∣
∫ 1

0

(
∂

∂d
Yi,j (d + (d − d) t, Xi) − ∂

∂d
Y i,j

(
d + (d − d) t, Xi, ξ

i
; θ (G)

))
(d − d) dt

∣∣∣∣∣ ≤

δ (G)
∑

j

∣∣∣dj − dj

∣∣∣ ≤ C1δ (G)

for C1 a constant that depends only on the dimension and diameter of D. Note that by construction
Y i,j (·) is a function of (Yi (·) , Xi) only, and so is independent of Zi conditional on Xi. Hence, for

Y i = Y i (Di, Xi) ,

and any set of mean-independent mean-zero instruments fE
G (Xi, Zi) ,

EG

[
fE

G (Xi, Zi) R∗ (Y i, Di, Xi; θ (G))
]

= 0.

Note that since we use mean-independent mean-zero instruments, the moment condition in-
volving fE

G (x, z) R∗ (y, d, x; θ) is the same whether computed using R∗ or R∗∗. Our assumption
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that fE
G (x, z) R∗∗ (y, d, x; α) is Lipschitz in y implies that

sup
θ

∥∥∥EG

[
fE

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α)
]

− EG

[
fE

G (Xi, Zi) R∗∗ (Y i, Di, Xi; α)
]∥∥∥ =

≤ ρC2EG [∥Yi − Y i∥] ≤ ρC2δ (G) ,

for C2 again a constant that depends only on the dimension and diameter of D. Hence, for small
δ (G) the moment conditions are nearly satisfied at θ (G), in the sense that

∥∥∥EG

[
fE

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α (G))
]∥∥∥ ≤ ρC2δ (G) .

Since we have assumed strong identification, it follows that for any ε > 0, there exists δ̄ > 0 such
that δ (G) < δ̄ implies ∥α∗ (G) − α (G)∥ < ε.

By our uniform continuity assumption on ∂
∂d

Y ∗∗
i , for δ (G) < δ̄ we thus have that

sup
y,d,x

∥∥∥∥∥ ∂

∂d
Y ∗∗

i (d, x, R∗∗ (y, d, x; α∗ (G)) ; α∗ (G)) − ∂

∂d
Y ∗∗

i (d, x, R∗∗ (y, d, x; α (G)) ; α (G))
∥∥∥∥∥ ≤ κ (ε) ,

and hence that for ξ∗∗
i (α) = R∗∗ (Yi, Di, Xi; α), ξ∗

i (θ) = R∗ (Yi, Di, Xi; θ), and ωi,j,j′ (d, η) =
ηj,j′ (d; Yi (·) , Di (·) , Xi, Zi) ,

sup
η:∥η∥H≤1

∑
j,j′

EG

[∫ (
∂

∂dj
Y ∗∗

i,j′ (d, Xi, ξ∗∗
i (α∗ (G)) ; α∗ (G)) − ∂

∂dj
Y ∗∗

i,j′ (d, Xi, ξ∗∗
i (α (G)) ; α (G))

)
dωi,j,j′ (d, η)

]
=

sup
η:∥η∥H≤1

∑
j,j′

EG

[∫ (
∂

∂dj

Y ∗
i,j′ (d, Xi, ξ∗

i (θ∗ (G)) ; θ∗ (G)) − ∂

∂dj

Y ∗
i,j′ (d, Xi, ξ∗

i (θ (G)) ; θ (G))
)

dωi,j,j′ (d, η)
]

=

≤ C3κ (ε)

for a constant C3. Hence, by the definition of δ (G) and the triangle inequality, for all G such that
δ (G) ≤ δ̄ we have that

sup
η:∥η∥H≤1

|τ ∗ (θ∗ (G) , G, η) − τ (G, η)| ≤ δ̄ + C3κ (ε) ,

where we can make the upper bound arbitrarily small by choosing δ̄ and ε appropriately. This
proves the first part of the proposition.

To prove the second part of the proposition, for square-integrable functions h : X → RJ let
us consider paths Gh

t such that Gh
0 = G0 for all h, while for t > 0 Gh

t replaces the value Yi (d, x)
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drawn from G0 by

Y t·h
i (d, x) = Y ∗

i (d, x, R∗ (Yi (d, x) , d, x; θ0) + t · h (x) ; θ0) .

By Assumption 4, Gh
t ∈ G for t sufficiently small. By the implicit function theorem and the

assumption that ∂
∂θ

mG0 (θ0) has full rank for mG (θ) = EG [f ∗
G (Xi, Zi) R∗ (Yi, Di, Xi; θ)] ,

∂

∂t
θ∗ (G0) = −

(
∂

∂θ
mG0 (θ0)

)−1
∂

∂t
mG0 (θ) .

Note, however, that by Assumption 4(iv) and the definition of Y t·h
i ,

∂

∂t
mG0 (θ) = EG0

[
∂

∂t
f ∗

G0 (Xi, Zi) R∗ (Yi, Di, Xi; θ0)
]

+ EG0

[
f ∗

G0 (Xi, Zi) h (Xi)
]

,

where we assume the researcher’s model is correctly specified at G0 and unconditional exogeneity
holds, so R∗ (Yi, Di, Xi; θ0) = ξi where EG [ξi] = 0 and ξi ⊥⊥ (Xi, Zi). Hence, the first term is
zero, and

∂

∂t
θ∗ (G0) = −

(
∂

∂θ
mG0 (θ0)

)−1

EG0

[
f ∗

G0 (Xi, Zi) h (Xi)
]

.

If we take h (Xi) = E
[
f ∗

G0 (Xi, Zi) |Xi

]′
v, we see that

∂

∂t
θ∗ (G0) = −

(
∂

∂θ
mG0 (θ0)

)−1

M Iv, M I = EG0

[
EG0

[
f ∗

G0 (Xi, Zi) |Xi

]
EG0

[
f ∗

G0 (Xi, Zi) |Xi

]′]
.

Since we have assumed that ∂
∂θ

mG0 (θ0) has full rank, we know that rank
(
E
[
f ∗

G0 (Xi, Zi) f ∗
G0 (Xi, Zi)′

])
=

dim (θ). Note that we can write

M = EG0

[
f ∗

G0 (Xi, Zi) f ∗
G0 (Xi, Zi)′

]
= M I + ME

for

ME = EG0

[(
f ∗

G0 (Xi, Zi) − EG0

[
f ∗

G0 (Xi, Zi) |Xi

]) (
f ∗

G0 (Xi, Zi) − EG0

[
f ∗

G0 (Xi, Zi) |Xi

])]
.

For any A in the left null space of M I , AM I = 0, we have E
[
Af ∗

G0 (Xi, Zi) |Xi

]
= 0, so Af ∗

G0 is
a potential choice of conditional mean-zero instrument. For B an orthogonal basis for the left null
space of M I , failure of strong exclusion implies that

BEG0

[(
f ∗

G0 (Xi, Zi) − EG0

[
f ∗

G0 (Xi, Zi) |Xi

]) (
f ∗

G0 (Xi, Zi) − EG0

[
f ∗

G0 (Xi, Zi) |Xi

])]
B′

58



has rank strictly less than α (since otherwise we could take fE
G0 = Bf ∗

G0 and verify strong exclu-
sion). For M to have rank θ, M I must therefore have rank at least dim (β) + 1.

Let Sαθ select the rows of θ corresponding to α. Since
(

∂
∂θ

mG0 (θ0)
)−1

has full rank by as-

sumption, −
(

∂
∂θ

mG0 (θ0)
)−1

M I has column rank at least dim (β) + 1, so

Sα

(
∂

∂θ
mG0 (θ0)

)−1

M Iv : v ∈ RJ

 ̸= {0} ,

and there exists some v0 such that for h0 (Xi) = E
[
f ∗

G0 (Xi, Zi) |Xi

]′
v0,

∣∣∣ ∂
∂t

α∗
(
Gh0

0

)∣∣∣
t=0

̸= 0.

Consequently, for some ε > 0 we have α∗
(
Gh0

0

)
̸= α∗

(
Gh0

ε

)
. Note, however, that Gh0

t only shifts

the role of the x in the residual, so causally correct specification holds and δ
(
Gh0

ε

)
= 0, where

Y ε·h0
i (d, Xi) = Y ∗

i

(
d, Di, R∗

(
Y ε·h0

i , Di, Xi; θ0
)

; θ0
)

for all d

by construction. Consequently, τ
(
Gh0

ε ; η
)

= τ ∗
(
θ0, Gh0

ε ; η
)

for all causal summaries. Since T ′ is
α-sensitive, however, there exists η ∈ H′ such that

τ ∗
(
θ0, Gh0

ε ; η
)

̸= τ ∗
(
θ∗
(
Gh0

ε

)
, Gh0

ε ; η
)

,

and consequently τ
(
Gh0

ε ; η
)

̸= τ ∗
(
θ∗
(
Gh0

ε

)
, Gh0

ε ; η
)

. Since δ
(
Gh0

ε

)
= 0, this immediately im-

plies that
sup

G∈G:δ(G)=0

∣∣∣τ (Gh0
ε ; η

)
− τ ∗

(
θ∗
(
Gh0

ε

)
, Gh0

ε ; η
)∣∣∣ > 0,

which proves the proposition. 2

A.5 Proof of Corollary 1

The difference between Propositions 3 and 4 is that the latter considers an α-sensitive class of
targets T ′ while the former considers the maximal class of targets T . To prove the corollary, it
suffices to show that for the DGPs Gh0

ε considered in Assumption 4 and discussed in the proof of
Proposition 4, there exists η ∈ H such that

τ
(
θ∗
(
Gh0

ε

)
, Gh0

ε ; η
)

̸= τ
(
θ0, Gh0

ε ; η
)

= τ
(
Gh0

ε ; η
)

.

Note that this property is weaker than α-sensitivity, since it concerns behavior only at the specific
DGPs Gh0

ε and compares behavior at θ0 to that at θ∗
(
Gh0

ε

)
, while α-sensitivity restricts behavior

across all G ∈ G and considers all (α, α′) pairs.
Towards contradiction, suppose this property fails to hold. Then for α = α∗

(
Gh0

ε

)
̸= α0,
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τ
(
θ, Gh0

ε ; η
)

= τ
(
θ0, Gh0

ε ; η
)

for all η ∈ H. By the same arguments used to prove Proposition 1,
this implies that

∑
j,j′

EG

[∫
sup

d

∣∣∣∣∣ ∂

∂dj

Y ∗∗
i,j′ (d, Xi, ξ∗∗

i (α) ; α) − ∂

∂dj

Y ∗∗
i,j′ (d, Xi, ξ∗∗

i (α0) ; α0)
∣∣∣∣∣
]

= 0,

for ξ∗∗
i (α) = R∗∗ (Yi, Di, Xi; α) , so

∂

∂d
Y ∗∗

i (d, Xi, ξ∗∗
i (α0) ; α0) = ∂

∂d
Y ∗∗

i (d, Xi, ξ∗∗
i (α0) ; α0)

for all d almost surely. Since the model implied outcomes match the observed Yi by construc-
tion, it follows that Y ∗∗

i (d, Xi, ξ∗∗
i (α) ; α) = Y ∗∗

i (d, Xi, ξ∗∗
i (α0) ; α0) for all d almost surely, and

consequently that
R∗∗ (Y ∗∗

i (d, Xi, ξ∗∗
i (α0) ; α0) , d, Xi; α) = ξ∗∗

i (α)

almost surely, so we can write ξ∗∗
i (α) = q (ξ∗∗

i (α0) , Xi) for a known function q.
Note, moreover, that since Gh0

ε corresponds to the case of causally correct specification, Yi (d, x) =
Y ∗∗

i (d, x, ξ∗∗
i ; α0) for ξ∗∗

i = ξ∗∗
i (α0), where our independence assumptions ensure that ξ∗∗

i ⊥⊥
Zi|Xi. The argument above implies that ξ∗∗

i (α) ⊥⊥ Zi|Xi as well, and hence that

E
G

h0
ε

[ξ∗∗
i (α0) − ξ∗∗

i (α) |Zi, Xi] = E
G

h0
ε

[ξ∗∗
i (α0) − ξ∗∗

i (α) |Xi]

by construction, so

Var
G

h0
ε

(
E

G
h0
ε

[ξ∗∗
i (α0) − ξ∗∗

i (α) |Zi, Xi] |Xi

)
= 0

almost surely. However, this contradicts Assumption 4(v). 2

B Bias Bounds for Restricted Classes of Causal Summaries

Our results in the main text focus on approximate causal consistency, which concerns worst-case
performance over causal summaries τ ∈ T . When the researcher’s estimand solves moment con-
ditions which satisfy our conditions for strong exclusion, however, there exists a class of causal
summaries T ∗ which are always consistently estimated.

Assumption 5. (Smoothness of researcher’s model) Under the researcher’s model, Y ∗(d, x, ξ; θ)
is differentiable in d for all (x, ξ, θ), R∗ (y, d, x; θ) is differentiable in (y, d) for all (x, θ), and
∂

∂y
R∗ (y, d, x; θ) is everywhere full rank.
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Proposition 5. Suppose Assumptions 1 and 5 hold, and that the researcher’s estimand solves

EG

[
fE

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α∗ (G))
]

= 0

where EG

[
fE

G (Xi, Zi) |Xi

]
= 0, fE

G (x, z) ∈ RLE×J , and rank
(
EG

[
fE

G (Xi, Zi) fE
G (Xi, Zi)′

])
=

LE . Then for each v ∈ RLE
, we have that τv (G) = τ ∗

v (θ∗, G) for

τv (G) =
∑
j,j′

EG

[∫ ∂

∂dj′
Yi,j (d, Xi) dωv

i,j,j′ (d)
]

where the weights dωv
i,j,j′ (d) are defined implicitly by

∫
hi (d) dωv

i,j,j′ (d) =
∫

Z

∫ 1

0
hi (Di (x, zt))

∂

∂z
Di,j′ (x, zt) ∆zdt · ω̄v

i,j (d) dGZ|X (z|Xi)

for all integrable functions hi. Here ∆z = z+ − z−, zt = z0 + t∆z, z0 is any fixed value in Z , and

ω̄v
i,j (d) =

∑
j′

∂

∂yj

R∗
j′ (Yi (d, Xi) , d, Xi; θ∗ (G)) v′fE

G,j′ (Xi, z) .

The weights ωv
i,j,j′ have several notable features. First, these weights depend on the first-stage

effect of Zi on Di, and so reflect which units (and which values of Di) are affected by the instru-
ments. Second, these weights may be either positive or negative. Third, these weights (and hence
the target τv) are indexed by v ∈ RLE

, so the dimension of the set T ∗ =
{
τv : v ∈ RLE

}
is equal to

the number of mean-independent mean-zero instruments fE
G . Note that Proposition 5 applies even

when LE < dim (α) , so the researcher estimates certain causal summaries correctly (regardless
of the distance from causally correct specification) as soon as the researcher’s estimand solves a
single moment equation formed using mean-independent mean-zero instruments.

Proposition 5 shows that the researcher makes no error for causal summaries in T ∗, but can
also be used to bound the degree of error for causal summaries that are “close” to T ∗. Specifically,
for any causal summary τ = τ (·; η) , define

∥τ∥∗
G = min

τ̃∈T ∗
∥τ − τ̃∥H

as the distance between τ and the closest element of T ∗. We can bound the researcher’s error for
all such causal summaries:

Corollary 2. For any η ∈ H, Assumptions 1 and 5 imply that

|τ (G; η) − τ ∗ (θ∗ (G) , G; η)| ≤ ∥τ∥∗
G δ (G) .
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The weights in Proposition 5 are rather involved and reflect our potentially nonlinear, multi-
variate setting. If we specialize the result to cases considered elsewhere in the literature this result
simplifies considerably. As discussed in the main text, the literature has primarily considered the
linear IV model with a single endogenous variable. Suppose that Yi is scalar, that Xi is constant,
that Zi is randomly assigned (Yi (·) , Di (·)) ⊥⊥ Zi, and that the researcher considers a linear model

Y ∗
i (d, ξi; θ) = β + α · d + ξi

with instruments f ∗ (Zi) = (1, g (Zi))′ or, equivalently, f ∗ (Zi) = (1, g (Zi) − EG [g (Zi)])′ , not-
ing that the resulting estimand satisfies strong exclusion by construction. Under a monotonicity
assumption, all estimands in the class we consider are rescalings of the LATE derived in Theorem
4 of Angrist, Graddy, and Imbens (2000).

Corollary 3. In the linear IV model, for all η ∈ H

τ ∗ (θ∗ (G) , G; η) = α∗ (G)
∑
j,j′

EG

[∫
dωi,j,j′ (d)

]
,

where Theorem 4 of Angrist, Graddy, and Imbens (2000) provides a LATE characterization of

α∗ (G) under monotonicity and other assumptions discussed in that paper.

Beyond linear IV, suppose the residual function is additively separable in Yi and the other
variables,

R∗ (Yi, Di, Xi; θ) = A∗∗ (Yi) + B∗∗ (Di, Xi; α) − L∗∗ (Xi; β) . (5)

This assumption holds, for instance, in the linear and logit examples discussed in the text. In this
case, the class of causal summaries T ∗ =

{
τv : v ∈ RLE

}
derived in Proposition 5 is α-sensitive

in the sense of Definition 7 under an additional identification condition.

Corollary 4. If the residual function takes the form (5) and the mean of the moments

EG

[
fE

G (Xi, Zi) R∗ (Yi, Di, Xi; θ)
]

= EG

[
fE

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α)
]

is a one-to-one function of α for all G ∈ G then the class of causal summaries T ∗ =
{
τv : v ∈ RLE

}
is α-sensitive in the sense of Definition 7.

The condition that the mean of the moments is one-to-one in α is equivalent to requiring that
EG

[
fE

G (Xi, Zi) B∗∗ (Di, Xi; α)
]

is one-to-one, and implies that the moment conditions have a
unique solution for all G ∈ G. Hence, this condition is closely connected to (though not nested
with) the assumption that α is strongly identified by the mean-independent instruments.
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B.1 Proof of Proposition 5

We next state several technical lemmas which will be helpful in proving Proposition 5.

Lemma 3. For any v ∈ RLE , j ∈ [J ], ′fE
G,j (Xi, Zi) the jth column of fE

G (Xi, Zi), and any R-

valued function B∗ (x, z) that is differentiable in z for all x, provided EG

[
v′fE

G,j (Xi, Zi) |Xi

]
= 0

we can write

EG

[
v′fE

G,j
(Xi, Zi) B∗ (Xi, Zi)

]
= EG

[∫
Z

∫ 1

0

∂

∂z
B∗ (Xi, zt) ∆zdt · v′fE

G,j (Xi, z) dGZ|X (z|Xi)
]

for ∆z = z − z0 and zt = z0 + t · ∆z.

Proof of Lemma 3 Note that since EG

[
v′fE

G,j (Xi, Zi) |Xi

]
= 0 and (Yi (·) , Di (·)) ⊥⊥ Zi|Xi,

EG

[
v′fE

G,j (Xi, Zi) B∗ (Xi, z0)
]

= 0 for any fixed z0. Hence,

EG

[
v′fE

G,j (Xi, Zi) B∗ (Xi, Zi)
]

= EG

[
v′fE

G,j (Xi, Zi) (B∗ (Xi, Zi) − B∗ (Xi, z0))
]

=

EG

[∫
Z

(B∗ (Xi, z) − B∗ (Xi, z0)) v′fE
G,j (Xi, z) dGZ|X (z|Xi)

]
=

EG

[∫
Z

∫ 1

0

∂

∂z
B∗ (Xi, zt) ∆zdt · v′fE

G,j (Xi, z) dGZ|X (z|Xi)
]

as we aimed to show. □

Lemma 4. Suppose that EG

[
v′fE

G (Xi, Zi) |Xi

]
= 0. Then, for any differentiable function B (Yi, Di, Xi) ∈

RJ ,

EG

[
v′fE

G (Xi, Zi) B (Yi, Di, Xi)
]

= EG

∑
j,j′

∫
T D→Bj

i,j′ (d, Xi) dω̃v
i,j,j′ (d)


where

T D→Bj

i,j′ (d, x) = ∂

∂y
Bj (Yi (d, x) , d, x) ∂

∂dj′
Yi (d, x) + ∂

∂dj′
Bj (Yi (d, x) , d, x)

is the total derivative of Bj with respect to Di,j′ and ω̃v
i,j,j′ (d) is defined implicitly by

∫
hi (d) dω̃v

i,j,j′ (d) =

∫
Z

∫ 1

0
hi (Di (Xi, zt))

∂

∂z
Di,j′ (Xi, zt) ∆zdt · v′fE

G,j (Xi, z) dGZ|X (z|Xi) ,

for all measurable hi (·).
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Proof of Lemma 4 Note that EG

[
v′fE

G (Xi, Zi) B (Yi, Di, Xi)
]

= EG

[∑
j v′fE

G,j (Xi, Zi) Bj (Yi, Di, Xi)
]

.

Under the nesting model and conditional exogeneity, we can write

EG

[
v′fE

G,j (Xi, Zi) Bj (Yi, Di, Xi)
]

=

∫
v′fE

G,j (x, z) EG [Bj (Yi (Di (x, z) , x) , Di (x, z) , x) |Xi = x] dGXZ (x, z) .

Since EG

[
v′fE

G (Xi, Zi) |Xi

]
= 0, Lemma 3 implies that

EG

[
v′fE

G,j (Xi, Zi) Bj (Yi, Di, Xi)
]

=

EG

[∫
Z

∫ 1

0

∂

∂z
B∗

j (Xi, zt) ∆z · v′fE
G,j (Xi, z) dGZ|X (z|Xi)

]

for B∗
j (x, z) = EG [Bj (Yi (Di (x, z) , x) , Di (x, z) , x) |Xi = x] . By the chain rule, however,

∂

∂z
B∗

j (Xi, z) = ∂

∂z
EG [Bj (Yi (Di (Xi, z) , Xi) , Di (Xi, z) , Xi) |Xi] =

EG

[
T D→Bj

i (Di (Xi, z) , Xi)
∂

∂z
Di (Xi, z) |Xi

]
,

so

EG

[
v′fE

G (Xi, Zi) B (Yi, Di, Xi)
]

=∑
j EG

[∫
Z
∫ 1

0 T D→Bj

i (Di (Xi, zt) , Xi) ∂
∂z

Di (Xi, zt) ∆zdt · v′fE
G,j (Xi, z) dGZ|X (z|Xi)

]
=∑

j,j′ EG

[∫
Z
∫ 1

0 T D→Bj

i,j′ (Di (Xi, zt) , Xi) ∂
∂z

Di,j′ (Xi, zt) ∆zdt · v′fE
G,j (Xi, z) dGZ|X (z|Xi)

]
,

from which the result is immediate. 2

Lemma 5. Suppose that EG

[
v′fE

G (Xi, Zi) |Xi

]
= 0. Then for weights dω̃v

i,j,j′ defined as in Lemma

4, Assumption 5 implies

EG

∑
j,j′

∫
T D→R∗

j (·;θ∗(G))
i,j′ (d, Xi) dω̃v

i,j,j′ (d)
 = 0.

Proof of Lemma 5 The result is immediate from Lemma 4 with B (Yi, Di, Xi) = R (Yi, Di, Xi; θ∗ (G)).
2

Returning to Proposition 5, recall that

T D→R(·;θ∗(G))
i (d, x) ≡ ∂

∂y
R∗ (Yi (d, x) , d, x; θ∗ (G)) ∂

∂d
Yi (d, x) + ∂

∂d
R∗ (Yi (d, x) , d, x; θ∗ (G)) .
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Under the researcher’s model, however, R∗ (Y ∗ (d, x, ξ; θ) , d, x; θ) ≡ ξ for all (d, x, ξ, θ) . Hence,
by the implicit function theorem,

∂

∂d
Y ∗ (d, x, ξ; θ) = −

(
∂

∂y
R∗ (Y ∗

i (d, x, ξ) , d, x; θ)
)−1

∂

∂d
R∗ (Yi, d, x; θ) ,

or rearranging, ∂
∂d

R∗ (Yi, d, Xi; θ) = − ∂
∂y

R∗ (Y ∗
i (d, x, ξ) , d, x; θ) ∂

∂d
Y ∗ (d, x, ξ; θ) . Hence,

T D→R∗(·;θ∗(G))
i,j (d, x) =

∂
∂y

R∗ (Yi (d, x) , d, x; θ∗ (G))
(

∂
∂dj

Yi (d, x) − ∂
∂dj

Y ∗
(
d, x, R∗

(
Yi (d, x) , d, x; θ̃G

)
; θ∗ (G)

))
.

Lemma 5 thus implies that

EG

∑
j,j′

∫ ∂

∂y
R∗

j (Yi (d, Xi) , d, Xi; θ∗ (G)) ∂

∂dj′
Yi (d, Xi) dω̃v

i,j,j′ (d)
 =

EG

∑
j,j′

∫ ∂

∂y
R∗

j (Yi (d, Xi) , d, Xi; θ∗ (G)) ∂

∂dj′
Y ∗

(
d, Xi, R∗

(
Yi (d, Xi) , d, Xi; θ̃G

)
; θ∗ (G)

)
dω̃v

i,j,j′ (d)
 .

Note, however, that we can write

∑
j,j′

∫ ∂

∂y
R∗ (Yi (d, Xi) , d, Xi; θ∗ (G)) ∂

∂dj

Yi (d, Xi) dω̃v
i,j,j′ (d) =

∑
j,j′

∫ ∂

∂dj′
Yi,j (d, Xi)

∑
j′′

∂

∂yj

R∗
j′′ (Yi (d, Xi) , d, Xi; θ∗ (G)) dω̃v

i,j′′,j′ (d) .

Thus, if we define ωv
i,j,j′by ∫

hi (d) dωv
i,j,j′ (d) =

∫
Z

∫ 1

0
hi (Di (x, zt))

∂

∂z
Di,j′ (x, zt) ∆zdt · ω̄v

i,j (d) dGZ|X (z|Xi)

for
ω̄v

i,j (d) =
∑
j′

∂

∂yj

R∗
j′ (Yi (d, Xi) , d, Xi; θ∗ (G)) v′fE

G,j′ (Xi, z)

and all measurable functions hi (d) , the result follows. 2
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B.2 Proof of Corollary 2

Note that for any η∗ such that τ (·; η∗) ∈ T ∗, τ (G; η∗) = τ ∗ (θ∗ (G) , G; η∗) by Proposition 5.
Hence,

τ (G; η) − τ ∗ (θ∗ (G) , G; η) = (τ (G; η) − τ (G; η∗)) − (τ ∗ (θ∗ (G) , G; η) − τ ∗ (θ∗, G; η∗))

= τ (G, ∆η) − τ ∗ (θ∗ (G) , G; ∆η)

for ∆η = η − η∗. Note, however, that η ∈ H by assumption. If η∗ ∈ H then linearity of H implies
that ∆η ∈ H as well, so the proof of Proposition 1 implies that

|τ (G, ∆η) − τ ∗ (θ∗ (G) , G; ∆η)| ≤ ∥∆η∥H δ (G) .

If instead η∗ ̸∈ H then ∥∆η∥H = ∞, and the bound holds trivially under the convention that
∞ · 0 = ∞. Since the bound holds for all η∗ ∈ T ∗, minimizing over η∗ yields the desired result. 2

B.3 Proof of Corollary 3

Note the structure of the linear model implies that

∂

∂d
Y ∗

i (d, x, R∗ (y, d, x; θ) ; θ) = ∂

∂d
Y ∗∗

i (d, x, R∗∗ (y, d, x; α) ; α) = α.

Consequently, for all η

τ ∗ (θ∗ (G) , G; η) = α∗ (G)
∑
j,j′

EG

[∫
dωi,j,j′ (d)

]
,

so τ ∗ (θ∗ (G) , G; η) is an η-dependent rescaling of the estimand α∗ (G). 2

B.4 Proof of Corollary 4

Note that since R∗ is the inverse of Y ∗ the function A∗∗ must be invertible in Y . Moreover,
Assumption 5 implies that A∗∗ is everywhere continuously differentiable with a full-rank Jacobian.
Hence, rather than considering causal effects on Yi we can equivalently consider causal effects on
Y A

i = A∗∗ (Yi) ,where

∂

∂d
Y A

i (d, Xi) = ∂

∂y
A∗∗ (Yi (d, Xi))

∂

∂d
Yi (d, Xi) ,
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and all causal summaries for outcome Yi can be written as causal summaries for Y A
i and vice

versa. For simplicity of notation assume we already transformed the outcome so Yi = Y A
i and the

residual function is linear in Yi,

R∗ (Yi, Di, Xi; θ) = Yi + B∗∗ (Di, Xi; α) + L∗∗ (Xi, β) .

Proposition 5 then implies that

τv (G) =
∑
j,j′

EG

[∫ ∂

∂dj′
Yi,j (d, Xi) dωv

i,j,j′ (d)
]

for ωv
i,j,j′ such that

∫
hi (d) dωv

i,j,j′ (d) =
∫

Z

∫ 1

0
hi (Di (x, zt))

∂

∂z
Di,j′ (x, zt) ∆zdt · v′fE

G,j (Xi, z) dGZ|X (z|Xi)

for all integrable functions hi. Lemma 4 implies that

EG

[
v′fE

G (Xi, Zi) B∗∗ (Di, Xi; α)
]

=
∑
j,j′

EG

[∫
T D→B∗∗

j

i,j′ (d, Xi) dωv
i,j,j′ (d)

]
,

where the linear structure of the model implies that

T D→B∗∗
j

i,j′ (d, Xi) = ∂

∂dj′
B∗∗

j (d, Xi, α) = ∂

∂dj′
Y ∗∗

j (d, Xi, ξ∗∗
i (α) ; α) = ∂

∂dj′
Y ∗

j (d, Xi, ξ∗
i (θ) ; θ)

for all θ = (α, β) for some β. Since the weights are the same as for τv (G) , we thus have that

EG

[
v′fE

G (Xi, Zi) B∗∗ (Di, Xi; α)
]

= τ ∗
v (θ; G) .

We have assumed, however, that the function EG

[
fE

G (Xi, Zi) B∗∗ (Di, Xi; α)
]

is one-to-one in α,
which implies that for any α ̸= α′ there exists v ∈ RLE such that

EG

[
v′fE

G (Xi, Zi) B∗∗ (Di, Xi; α)
]

̸= EG

[
v′fE

G (Xi, Zi) B∗∗ (Di, Xi; α)
]

,

and consequently τ ∗
v (θ; G) ̸= τ ∗

v (θ′; G) for θ = (α, β) and θ′ = (α′, β′) , as required by the
definition of α-sensitivity. 2
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C Additional Results for Enforcing Strong Exclusion in Practice

C.1 Conditions for Strong Exclusion

In this section, we provide necessary and sufficient conditions for the researcher’s estimator to sat-
isfy strong exclusion. We focus on the case in which the researcher’s estimand satisfies a moment
equation of the form in (2) with f ∗

G (Xi, Zi) = WGf ∗ (Xi, Zi) for some weight matrix WG. This
nests GMM in which case f ∗

G (Xi, Zi) = MθΩf ∗ (Xi, Zi). We first provide a necessary condition
that formalizes the maximal included dimension requirement discussed in Section 4 of the main
text.

Lemma 6. Suppose the researcher’s estimand satisfies a moment equation of the form in (2) with

f ∗
G (Xi, Zi) = WGf ∗ (Xi, Zi) for some weight matrix WG. For

ΞG = E
[
E [f ∗ (Xi, Zi) |Xi] E

[
f ∗ (Xi, Zi)′ |Xi

]]
,

strong exclusion of the estimator holds only if

rank (WGΞGW ′
G) ≤ dim (β) for all G ∈ G. (6)

Lemma 6 implies that even when some elements of the researcher’s chosen instruments f ∗ (Xi, Zi)
are mean zero and mean independent of Zi, strong exclusion can still fail for the estimator θ̂

when too many elements of f ∗ (Xi, Zi) are functionally dependent on Xi. To see this, notice that
E [f ∗ (Xi, Zi) |Xi] can be interpreted as the component of the researcher’s instruments that depend
on the included variables Xi, and the rank of ΞG measures the dimension of these instruments.
If the researcher selects fewer than dim (β) instruments that depend on included variables, in the
sense that rank (ΞG) ≤ dim (β) for all G ∈ G, then rank (WGΞGW ′

G) ≤ dim (β) for all G and
all WG, and the necessary condition (6) for strong exclusion always holds. By contrast, if the re-
searcher instead selects more than dim (β) instruments that depend on included variables, in the
sense that rank (ΞG) > dim (β) for some G ∈ G, then for Lebesgue almost-every WG we have
that rank (WGΞGW ′

G) > dim (β) as well, violating (6).
We can further provide sufficient conditions for strong exclusion for commonly-used estima-

tors. As a leading example, suppose the researcher’s estimator is chosen to solve the GMM prob-
lem minθ m̂(θ)′Ω̂m̂(θ). Then, under standard regularity conditions, it is sufficient that at most
dim (β) rows of f ∗ (Xi, Zi) are not mean-zero and mean independent of Xi. To see why, partition
the instruments as f ∗ (Xi, Zi) =

(
fE (Xi, Zi)′ , f I (Xi, Zi)′

)′
, where E

[
fE (Xi, Zi) |Xi

]
= 0,

E
[
f I (Xi, Zi) |Xi

]
̸= 0 and f I (Xi, Zi) ∈ Rdim(β)×J . The first-order conditions of the population

analogue to the GMM problem imply that we can then define the researcher’s estimator as sat-
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isfying (2) with f ∗
G (Xi, Zi) =

 W E
G

W I
G

(fE (Xi, Zi)′ , f I (Xi, Zi)′
)′

for W E
G ∈ Rdim(α)×K and

W I
G ∈ Rdim(β)×K where the last dim (β) columns of W E

G are zero. In this leading case where
the researcher’s estimator is chosen to solve the GMM problem, the additional requirement that at
most dim (β) rows of f ∗ (Xi, Zi) are not mean-zero and mean independent of Xi is sufficient for
strong exclusion.

C.2 Enforcing Mean Independence with respect to Coarsened Included Variables

As discussed in the main text, in some cases the included variables Xi may be too rich, relative
to the sample size, for full residualization of Zi with respect to Xi to be feasible. In such cases,
we can still residualize against coarsenings of Xi to obtain weaker versions of our guarantees.
Specifically, let χi = χ (Xi) denote a coarsening of Xi, and suppose the researcher’s estimand
solves the effective moment condition

EG

 f̄E
G (Xi, Zi)

f I
G (Xi, Zi)

R∗ (Yi, Di, Xi; θ∗ (G))
 = 0 (7)

where f̄E
G (Xi, Zi) is fully residualized against χi, EG

[
f̄E

G (Xi, Zi) |χi

]
= 0, and f̄E

G (Xi, Zi) is or-

thogonal to L∗∗ (Xi; β), EG

[
f̄E

G (Xi, Zi) L∗∗ (Xi; β)
]

= 0 for all β, but we may have EG

[
f̄E

G (Xi, Zi) |Xi

]
̸=

0. We extend our definitions from the main text to cover this case.

Definition 9. The researcher’s estimator satisfies strong exclusion based on coarsely residual-
ized instruments if the corresponding estimand solves a moment equation of the form in (7),
where f̄E

G (Xi, Zi) has at least dim (α) = dim (θ) − dim (β) linearly independent rows.

Definition 10. Under strong exclusion, α is identified by coarsely residualized instruments if the
moment conditions formed using these instruments have a unique solution. That is, the parameter
α is identified by f̄E

G (Xi, Zi) if and only if for all G ∈ G and any α,

∥∥∥EG

[
f̄E

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α)
]∥∥∥ = 0

only if α = α∗ (G).

For coarse residualization to yield guarantees, we also need to limit the forms of misspec-
ification considered. Specifically, we assume the potential outcomes take the form derived in
Proposition 2 and restrict the functions of Xi that appear in the residual.
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Definition 11. The model misspecification is spanned by χi if for all G ∈ G and some α0 (G),
β0 (G), and for some scalar γ ∈ R,

Yi (d, Xi) = Y ∗∗ (d, Xi, ξi + γ · L∗∗ (Xi; β0 (G)) + L∗
i (χi) ; α0 (G))

where EG [ξi|Xi, Zi] = 0 and L∗
i (·) ⊥⊥ Zi|χi.

Note that by Proposition 2 this condition implies causally correct specification, and imposes an
additional restriction that ξi be mean-independent of Zi given χi.

Proposition 6. Suppose that strong exclusion holds based on f̄E
G (Xi, Zi) , that α is identified by

f̄E
G (Xi, Zi), and that the model misspecification is spanned by χi. Then for all G ∈ G, α∗ (G) =

α0 (G) and τ ∗ (θ∗ (G)) = τ (G) for all τ ∈ T .

Proof. Since we have assumed that EG

[
f̄E

G (Xi, Zi) L∗∗ (Xi; β)
]

= 0 for all β, and R∗ (Yi, Di, Xi; α, β) =
R∗∗ (Yi, Di, Xi; α) − L∗∗ (Xi; β) , it follows that

EG

[
f̄E

G (Xi, Zi) R∗ (Yi, Di, Xi; α, β)
]

= EG

[
f̄E

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α)
]

for all α,β. Our assumptions imply that

R∗∗ (Yi, Di, Xi; α0 (G)) = ξi + γ · L∗∗ (Xi; β0 (G)) + L∗
i (χi) ,

EG

[
f̄E

G (Xi, Zi) ξi

]
= EG

[
EG

[
f̄E

G (Xi, Zi) |Xi, Zi

]
EG [ξi|Xi, Zi]

]
= 0,

EG

[
f̄E

G (Xi, Zi) L∗∗ (Xi, β0 (G))
]

= 0,

and
EG

[
f̄E

G (Xi, Zi) L∗
i (χi)

]
= EG

[
EG

[
f̄E

G (Xi, Zi) |χi

]
EG [L∗

i (χi) |χi]
]

= 0

so EG

[
f̄E

G (Xi, Zi) R∗∗ (Yi, Di, Xi; α0 (G))
]

= 0. By our identification assumption, however, it
follows that α∗ (G) = α0 (G) , as we aimed to show. The conclusion for causal summaries is then
immediate.

C.3 Enforcing Mean Independence through Residualization

Section 4.4 introduces a direct procedure for enforcing strong exclusion that involves flexibly resid-
ualizing some of the researcher’s chosen instruments with respect to the included variables Xi as a
first step. In this appendix, we describe in more detail how the researcher may implement flexible
residualization and conduct inference on the resulting estimand.
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To describe the direct procedure, again suppose the researcher has selected some initial instru-
ments f̂ (Xi, Zi) and weight matrix Ω̂. The direct procedure for enforcing strong exclusion sets
aside exactly dim (β) rows of f̂ (Xi, Zi), flexibly residualizes the remaining rows with respect to
Xi, and uses the resulting residualized instruments to construct their GMM estimator. As notation,
let f̂j (Xi, Zi) denote the j-th row of the researcher’s initial instruments. We write f̂1:dim(β) (Xi, Zi)
as the first dim (β) rows of the researcher’s chosen instruments and define f̂(dim(β)+1):L (Xi, Zi)
analogously.

The direct procedure is a semiparametric two-step GMM estimator (see, for example, Andrews
1994, Newey 1994, Ai and Chen 2003, and Ai and Chen 2007). We can therefore apply existing
results to conduct inference. In what follows, we discuss two cases: first, the researcher assumes
that the conditional expectation of the researcher’s chosen instruments given the included variables
Xi is linear in a fixed and flexible basis of known transformations of Xi; and second, the researcher
estimates the conditional expectations using nonparametric estimators.

Flexible parametric first-step estimation We first consider the case in which the researcher as-
sumes that the conditional expectation of f̂(dim(β)+1):L (Xi, Zi) given Xi is linear in some known
transformations of Xi. That is, for each j = dim (β)+1, . . . , L, EG

[
f̂j (Xi, Zi) | Xi

]
= γ′

jbj (Xi),
where bj (Xi) ∈ Rkj is a vector of known transformations of Xi. This assumption is automatically
satisfied whenever Xi has finite support, as in our application in Section 5. The assumption also
holds if the researcher is prepared to specify a flexible (but known and fixed) basis of nonlinear
transformations of Xi such as a finite-dimensional sieve or polynomial basis. The assumption
is also consistent with common practice in many situations—see, e.g., Blandhol et al. (2022) re-
garding the linear instrumental variables model and Ackerberg, Chen, and Hahn (2012) regarding
two-step estimators for structural models.

Under this assumption, estimation can proceed in two steps. First, the researcher forms the
sample moment function

ĝ(Γ) = 1
n

∑
i

b (Xi)′
(

f̂(Pβ+1):L (Xi, Zi) − b (Xi) Γ
)

letting Γ and b (Xi) be block diagonal matrices containing γdim(β)+1, . . . γL and bdim(β)+1(Xi), . . . , bL(Xi)
of appropriate dimensions. The researcher then selects the estimator Γ̂ = minΓ ĝ (Γ)′ Ω̂gĝ (Γ) for
some weight matrix Ω̂g with population value Ωg. Second, taking the estimator Γ̂ from the first-
step, the researcher then constructs the sample moment function

ˆ̃m
(
θ, Γ̂

)
= 1

n

∑
i

 f̂1:dim(β) (Xi, Zi)
f̂(dim(β)+1):L (Xi, Zi) − b (Xi) Γ̂

R∗ (Yi, Di, Xi; θ) .
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In the case where the researcher’s estimator is just-identified, it is well-known that we can as-
sess the asymptotic variance of the researcher’s estimator by analyzing the conventional one-step

GMM estimator with the stacked moments

 ĝ (Γ)
ˆ̃m (θ, Γ)

 (e.g., Murphy and Topel 1985). In the

case where the researcher’s estimator is over-identified, we can again form the stacked moments
but there need not exist parameter values that exactly satisfy the population moments because the
researcher’s model may be misspecified. Hall and Inoue (2003) characterize the limiting distribu-
tion of misspecified GMM and provide a consistent estimator of the asymptotic covariance matrix.
Lee (2014) provides a nonparametric bootstrap that is robust to possible misspecification in the
researcher’s model.

Nonparametric first-step estimation We next consider the case in which the researcher mod-
els the conditional expectation of f̂(dim(β)+1):L (Xi, Zi) given Xi nonparametrically. Let us now
write hj (Xi) = EG

[
f̂(dim(β)+1):L (Xi, Zi) | Xi

]
, h (Xi) =

(
hdim(β)+1 (·) , . . . , hL (·)

)′
, and H as

the infinite-dimensional parameter space containing h (·). In this case, our direct procedure for en-
forcing strong exclusion can be implemented using the sieve minimum distance estimator analyzed
in Ai and Chen (2007) and Ai and Chen (2012). We can rewrite the population moment conditions
as

EG

[
f̂(dim(β)+1):L (Xi, Zi) − h (·) | Xi

]
= 0,

EG

[
f̂1:dim(β) (Xi, Zi) R∗ (Yi, Di, Xi; θ)

]
= 0,

EG

[(
f̂(dim(β)+1):L (Xi, Zi) − h (·)

)
R∗ (Yi, Di, Xi; θ)

]
= 0.

Of course, since the researcher’s model may be over-identified and misspecified, there need not
exist parameters h (·) , θ that exactly set the moment conditions equal to zero. For concreteness,
we suppose that the researcher specifies a nonparametric regression procedure based on series
(e.g., splines, polynomials, etc.) but any nonparametric least squares regression procedure may
be used. Like the parametric first-step case, for each j = Pβ + 1, . . . , L, the researcher specifies
basis functions bj (Xi) ∈ Rkj,n , where now the dimensionality of the basis functions depends on
the sample size n. Assuming an identity weight matrix and letting Hn denote the non-decreasing
approximation spaces, the sieve minimum distance estimator solves

(
θ̂, ĥ

)
= arg min

θ∈Θ,h∈Hn


L∑

j=dim(β)+1

1
n

n∑
i=1

gj,i (h)2 +
L∑

j=1

1
n

n∑
i=1

m̃j,i (θ, h)2


for

gj,i (h) = bj (Xi) ′
(
B′

jBj

)−1 n∑
i=1

bj (Xi)
(
f̂j (Xi, Zi) − hj (·)

)
,

Bj = (bj (X1) , . . . , bj (Xn))′ ,
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and
m̃j,i (θ, h) = f̂1:dim(β) (Xi, Zi) R∗ (Yi, Di, Xi; θ)

for j = 1, . . . , Pβ and

m̃j,i (θ, h) =
(
f̂j (Xi, Zi) − hj (·)

)
R∗ (Yi, Di, Xi; θ)

for j = dim (β) + 1, . . . , L. Under additional regularity conditions, Ai and Chen (2007) establish
that the sieve minimum distance estimator is consistent and asymptotically normal (centered at the
estimand θ∗ (G)), and provide a consistent estimator of its asymptotic variance. See also Ichimura
and Lee (2010) for related results. Hahn and Ridder (2013) and Hahn and Ridder (2019) con-
sider a related but different three-step estimation problem in which the researcher first constructs
some parametric estimate, second uses the parametric estimate to produce a generated regressor
that is used in a nonparametric regression procedure, and third plugs the estimated nonparametric
regression into a moment condition.

Remark 6. If the researcher’s model is just-identified, the researcher may also implement our di-
rect procedure for enforcing strong exclusion based on a debiased GMM estimator (Chernozhukov
et al. 2022). To see this, we now write researcher’s estimand as satisfying the moment condi-
tion EG [m̃i (θ, h)] = 0 for m̃i (θ, h) = (m̃1,i (θ, h) , . . . , m̃p,i (θ, h))′. The key step is to there-
fore derive the first-step influence function ϕi (θ, h, ξ), which may depend on additional nui-
sance parameters ξ. Given the first-step influence function, we may form the orthogonal mo-
ment function EG [m̃i (θ, h) + ϕi (θ, h, ξ)] and construct an estimator θ̂ using generic machine
learning based estimators for the nuisance functions h (·) , ξ (·) and cross-fitting. We provide a
heuristic derivation of the orthogonal moment condition using standard influence function calcu-
lations (e.g., see Kennedy 2023 and Hines et al. 2022). For j = 1, . . . , Pβ , the moment condition
EG [m̃j,i (θ, h)] = EG

[
f̂j (Xi, Zi) R∗ (Yi, Di, Xi; θ)

]
does not depend on the nuisance h (·), and

so it does not need to be orthogonalized. For j = Pβ + 1, . . . , L, we can write the moment con-
dition as EG [m̃j,i (θ, h)] = EG

[
f̂j (Xi, Zi) R∗ (Yi, Di, Xi; θ)

]
− EG [hj (Xi) R∗ (Yi, Di, Xi; θ)],

and we can focus on deriving the influence function for the second term. Defining r (Xi; θ) =
EG [R∗ (Yi, Di, Xi; θ) | Xi], the orthogonal population moment function is then

EG

[(
f̂j (Xi, Zi) − hj (Xi)

)
R∗ (Yi, Di, Xi; θ)

]
−

EG

[
r (Xi; θ)

(
f̂j (Xi, Zi) − hj (Xi)

)
+ hj (Xi) (R∗ (Yi, Di, Xi; θ) − r (Xi; θ))

] .

C.4 Automated Recipe for Strong Exclusion

Section 4.4 discusses a direct procedure for enforcing strong exclusion that requires the researcher
to make an intentional choice of which instruments to residualize. As an alternative, this section
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provides an automated procedure for enforcing strong exclusion based on a nested optimization.

Ingredients. (Strong exclusion)

• Instruments f̂ (Xi, Zi) ∈ RL×J , L ≥ P .

• Weight matrices Ω̂E, Ω̂I ∈ RL×L.

Recipe. (Strong exclusion)

• Residualize f̂ (Xi, Zi) with respect to Xi via nonparametric regression to obtain residual-

ized instruments fE (Xi, Zi), and define f I(Xi, Zi) = f̂(Xi, Zi) as the remaining instru-

ments.

• Form sample moment functions

m̂E (θ) = 1
n

∑
i

fE (Xi, Zi) R (Yi, Di, Xi; θ)

m̂I (θ) = 1
n

∑
i

f I (Xi, Zi) R (Yi, Di, Xi; θ)

• Solve

min
β

m̂I (α̂ (β) , β)′ Ω̂Im̂I (α̂ (β) , β) s.t.

α̂ (β) = arg min
α

m̂E (α, β)′ Ω̂Em̂E (α, β)

to obtain θ̂ =
(
α̂
(
β̂
)

, β̂
)
.

Provided the estimand from this procedure falls in the interior of the parameter space, it solves a

population moment equation of the form in (2) with f ∗
G (Xi, Zi) =

 W E
G

W I
G

(fE (Xi, Zi)′ , f I (Xi, Zi)′
)′

for some W E
G that has zeros except in its upper-left L × L block. Consequently, if the nonparamet-

ric regression used to form fE (Xi, Zi) is consistent and the excluded instruments have sufficient
variation, then the estimator satisfies strong exclusion.

For a researcher who has selected instruments and a weight matrix sufficient for estimation
via GMM, the researcher can take f I (Xi, Zi) = f̂ (Xi, Zi) to be the selected instruments and
Ω̂I = Ω̂E = Ω̂ to be the selected weight matrix. From there, the recipe is fully automated up to the
selection of a nonparametric regression procedure.
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C.4.1 Standard Errors and Efficient Weighting Under Automated Procedure

This appendix provides standard errors for the estimator θ̂ described in Section C.4 that enforces
strong exclusion. In the just-identified case, this is asymptotically equivalent to a standard GMM
estimator under standard regularity conditions, and the researcher may conduct inference using
the techniques described earlier in Section C.3. We therefore confine our attention to the over-
identified case under the assumption of correct specification. Conventional GMM standard errors
are invalid in over-identified and misspecified settings, and the same holds for the standard errors
derived here. Appendix C.3 discusses approaches to inference for our direct procedure that are
valid under overidentification and misspecification.

Recall that we define the estimator θ̂ to solve

min
β

m̂I (α̂ (β) , β)′ Ω̂Im̂I (α̂ (β) , β) s.t.

α̂ (β) = arg min
α

m̂E (α, β)′ Ω̂Em̂E (α, β) ,

where this formulation nests the case with dim (α) = L provided we can solve the excluded
moments. Considering first the “inner-loop” estimator α̂ (β) , note that the first-order conditions
for this estimator are

M̂E
α (α̂ (β) , β)′ Ω̂Em̂E (α̂ (β) , β) = 0,

for M̂E
α (α, β) = ∂

∂α
m̂E (α, β) , and hence under standard regularity conditions we have that for n

large and β close to β0,

α̂ (β) ≈ −
(
M̂E

α (α0, β)′ Ω̂EM̂E
α (α0, β)

)−1
M̂E

α (α0, β)′ Ω̂Em̂E (α0, β) .

Note further that the first-order conditions for β̂ are

(
M̂ I

β

(
α̂
(
β̂
)

, β̂
)

+ M̂ I
α

(
α̂
(
β̂
)

, β̂
) ∂

∂β
α̂
(
β̂
))′

Ω̂Im̂I
(
α̂
(
β̂
)

, β̂
)

= 0,

for M̂ I
β (α, β) = ∂

∂β
m̂I (α, β) and M̂ I

α (α, β) = ∂
∂α

m̂I (α, β) . Consequently, under standard reg-
ularity conditions we will have that for n large, θ̂ =

(
α̂, β̂

)
approximately solves the system of

equations Ŝ
(
α̂, β̂

)
m̂
(
α̂, β̂

)
≈ 0 for m̂ (α, β) =

(
m̂E (α, β)′ , m̂I (α, β)′

)′
and Ŝ (α, β) is equal

to M̂E
α (α, β)′ Ω̂E 0dim(α)×L

0dim(β)×L

(
M̂ I

β (α, β) − M̂ I
α (α, β)

(
M̂E

α (α, β)′ Ω̂EM̂E
α (α, β)

)−1
M̂E

α (α, β)′ Ω̂EM̂E
β (α, β)

)
Ω̂I

 .
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Hence, provided M̂
(
α̂, β̂

)
= ∂

∂θ
m̂
(
α̂, β̂

)
p−→ M0 and Ŝ

(
α̂, β̂

)
p−→ S0, as will again hold under

standard regularity conditions, we obtain

θ̂ − θ0 ≈ − (S0M0)−1 S0m̂ (θ0) ,

so if
√

nm̂ (θ0) d−→ N (0, Σ0) , one can show that

√
n
(
θ̂ − θ0

)
d−→ N

(
0, (S0M0)−1 S0Σ0S

′
0 (M0S

′
0)

−1)
,

and we can estimate this asymptotic variance by plugging in Ŝ
(
α̂, β̂

)
for S0, M̂

(
α̂, β̂

)
for M0, and

estimating Σ0 as appropriate for a given application (e.g., using a cluster-robust variance estimator
if desired).

Finally, to consider the efficient weighting matrix, note that estimation based on the “concen-
trated” moment function m̂I (α̂ (β) , β) is a special case of generalized minimum distance estima-
tion as considered in, e.g., Newey and McFadden (1994). Hence, the efficient weighting matrix
for the outer loop estimator is the inverse of the asymptotic variance of

√
nm̂I (α̂ (β0) , β0) for β0

the true parameter value. To derive this weighting matrix, note that, building on the results derived
above,

m̂I (α̂ (β0) , β0) ≈ m̂I (α0, β0)−M̂ I
α (α0, β0)

(
M̂E

α (α0, β0)′ Ω̂EM̂E
α (α0, β0)

)−1
M̂E

α (α0, β0)′ Ω̂Em̂E (α0, β0)

=
(

− M̂ I
α (α0, β0)

(
M̂E

α (α0, β0)′ Ω̂EM̂E
α (α0, β0)

)−1
M̂E

α (α0, β0)′ Ω̂E IL

) m̂E (α0, β)
m̂I (α0, β)

 ,

which says that for

S̃ΩE =
(

− M I
α (α0, β0)

(
ME

α (α0, β0)′ ΩEME
α (α0, β0)

)−1
ME

α (α0, β0)′ ΩE IL

)
,

the efficient outer-loop weighting matrix is
(
S̃ΩE Σ0S̃

′
ΩE

)−1
provided this matrix is non-singular.

Hence, a feasible (and efficient under correct specification) outer-loop weighting matrix plugs in
estimates for these components.

D Additional Theoretical Results and Discussion

D.1 Connections to Linear IV Estimands

Although our main focus is on applications to nonlinear, multivariate structural models, we used
the linear instrumental variable (IV) model throughout the main text to build intuition. We now
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discuss how our findings connect with those in the large literature on the interpretation of linear
instrumental variables (IV) estimators under model misspecification.

In this particular setting, our analysis connects our work to recent articles by Blandhol et al.
(2022) and Słoczyński (2022). These articles focus on the case of a binary treatment Di ∈ {0, 1}
together with the two-stage least squares estimator, and maintain monotonicity assumptions on
the potential endogenous variable function Di (·). These articles analyze whether the researcher’s
estimand α∗ (G) is a non-negative weighted average of causal effects of Di on Yi under alternative
ways of accounting for the covariates Xi. In the setting of these articles, controlling flexibly for Xi,
as the articles recommend, guarantees strong exclusion of the estimator. In contrast to these papers,
we consider a continuous endogenous variable Di, and our results apply to any estimator under
which the researcher’s estimand satisfies Equation (2). Our results establish a sense in which strong
exclusion is a necessary and sufficient condition for the researcher’s estimator to be approximately
causally consistent. The conclusion that eliminating dependence between excluded and included
variables strengthens the causal interpretation of linear IV estimators has other antecedents in the
literature, including Ansel, Hong, and Li (2018) and Borusyak and Hull (2023). In particular,
the “recentering” proposed by Borusyak and Hull (2023) for linear models suffices to ensure that
strong exclusion holds.

When Yi ∈ R is a scalar and Di ∈ RJ is vector-valued, our setting nests the linear instrumen-
tal variables model with multiple, discrete treatments studied in, for example, Angrist and Imbens
(1995), Heckman, Urzua, and Vytlacil (2006), Kirkeboen, Leuven, and Mogstad (2016), Kline and
Walters (2016), and Bhuller and Sigstad (2024), among many others. In a setting with multivalued
treatments, Bhuller and Sigstad (2024) establish that a causal interpretation of the usual 2SLS es-
timand as a convex weighted average of causal effects of particular treatments requires a condition
ensuring that each instrument is only related to one endogenous variable conditional on the other
instruments.25 Conditions of this kind may apply in some economic settings, but they are precluded
by, for example, the assumption of Bertrand-Nash pricing under complete information about costs
that underlies a large number of applications of differentiated goods demand estimation.26

Finally, as mentioned in the introduction, a large literature studies the interpretation of linear
IV estimators under other forms of model misspecification, emphasizing concerns that are distinct
from those we study. Angrist (2001) studies IV estimands in limited dependent variable settings,

25Kirkeboen, Leuven, and Mogstad (2016) note that two-stage least squares applied to unordered discrete treatments
does not estimate a convex combination of causal effects in general, but show that this can be resolved when ad-
ditional data is available (in their setting, data on next-best choices). Kline and Walters (2016) decompose the
IV estimands into alternative sub-local average treatment effects across different treatment values. Chalak (2017)
studies the interpretation of IV estimands in settings with ordered discrete treatments under violations of mono-
tonicity. Heckman and Pinto (2018) and Lee and Salanié (2018) study conditions under which treatment effects of
multi-valued treatments are nonparametrically point identified.

26Gandhi and Nevo (2021, p. 105) refer to this model of pricing as “the workhorse model of horizontal competition.”
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and characterizes a nonlinear estimand in terms of causal effects. Kolesár (2013) and Andrews
(2019) compare the estimands of different IV estimators in linear models. Kolesár et al. (2015)
discuss instrumental variables estimation when the exclusion restriction fails but the exclusion vi-
olations are orthogonal to the first stage. Mogstad, Santos, and Torgovitsky (2018) discuss the
interpretation of linear IV estimands in terms of marginal treatment effect functions. Kline and
Walters (2019) show that many nonlinear and linear models deliver numerically equivalent esti-
mates for local average treatment effects and average potential outcomes among certain subgroups.
Mogstad, Torgovitsky, and Walters (2021) study the interpretation of 2SLS with a binary treatment
and multiple instrumental variables under alternative monotonicity conditions.

D.2 Nonparametric Identification of Causal Summaries

In this section, we establish conditions for the nonparametric identification of a causal summary.
Towards this, we say a causal summary τ ∈ T is non-trivial over G if there exists some data
generating process G ∈ G such that τ(G) ̸= 0.

Proposition 7. Suppose that Yi (d, x) and Di (x, z) are everywhere continuously differentiable in

(d, z) almost surely under all G ∈ G. Let G∗ ⊆ G denote the class of distributions under which the

researcher’s model holds, meaning the potential outcomes satisfy Yi (d, x) = Y ∗ (d, x, ξi; θ) with

ξi = R (Yi (d, x) , d, x; θ) almost surely under all G ∈ G∗.

(a) If conditional exogeneity (Yi (·) , Di (·)) ⊥⊥ Zi | Xi holds under all G ∈ G and Yi ̸⊥⊥ Zi | Xi

holds under some G ∈ G, then there exists a non-trivial causal summary that is identified on

G from the joint distribution GY DXZ of the observed variables.

(b) Even if unconditional exogeneity (Yi (·) , Di (·)) ⊥⊥ (Xi, Zi) holds under all G ∈ G and

Yi ̸⊥⊥ Xi holds under some G ∈ G, no non-trivial causal summary is identified on G from

the joint distribution GY DX of the observed non-excluded variables.

(c) If for some instruments f ∗ (Xi) the moment condition EG [f ∗ (Xi) R (Yi, Di, Xi; θ)] = 0 has

a unique solution under all G ∈ G∗, then there exists a non-trivial causal summary that is

identified on G∗ from the distribution GY DX .

Proposition 7(a) states that, under conditional exogeneity, some nontrivial causal summary is
nonparametrically identified provided the researcher observes data on excluded variables Z. This
requires that Zi is not conditionally independent of the outcomes Yi, which can be loosely inter-
preted as requiring that there exists a non-trivial first-stage relationship between Zi and Di. By
contrast, Proposition 7(b) states that, even under unconditional exogeneity, no nontrivial causal
summary is nonparametrically identified if the researcher does not observe data on excluded vari-
ables. Intuitively, absent data on excluded variables, there is no nonparametric information in the
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data about the effect of ceteris paribus changes in Di. Because the set of causal summaries is
large (including, for example, any average elasticity or derivative of the outcome with respect to
the endogenous variable), failure to nonparametrically identify any member of this set is a strong
form of nonidentification.

Example. (Differentiated goods demand model, continued.) Berry and Haile (2014) discuss the
need for excluded variables for nonparametric identification of differentiated goods demand mod-
els, writing, “We emphasize that we require both the excluded instruments... and the exogenous
demand shifters” (pp. 1761-2). See also Berry and Haile (2016).

Proposition 7(c) states that data on excluded variables is not necessary for identification of a
causal summary if the researcher’s model holds. Intuitively, knowledge of functional form means
that the observed effect of Xi on Yi can be apportioned between a component due to the direct
effect of Xi and a component due to the indirect effect of Xi through Di.

Example. (Differentiated goods demand model, continued.) Berry, Levinsohn, and Pakes (1995)
discuss identification of a demand model using functions of the product characteristics as instru-
ments. Berry, Levinsohn, and Pakes (1995) note that assuming that a consumer’s utility depends
only on the characteristics of the chosen good, “combined with specific functional form and distri-
butional assumptions, is what allows us to identify the demand system even in the absence of cost
shifters that are excluded from the [Xij] vector” (p. 855).

D.3 Generalization to Dynamic Settings

In this section, we generalize our analysis to cover dynamic settings, focusing on dynamic panel
approaches to production function estimation as a concrete example referenced in the main text.

D.3.1 Dynamic Nesting Model

As in the main text, the researcher observes variables (Yi, Di, Xi, Zi) that are independently and
identically distributed (i.i.d.) according to some distribution for units i = 1, . . . , n, where all
variables are finite-dimensional. We first lay out a dynamic nesting model defined in a potential
outcomes framework, with potential outcome and potential endogenous variable functions Yi (·)
and Di (·) and observed values Yi = Yi (Xi, Di, Zi) ∈ RJand Di = Di (Xi, Zi) ∈ RJ , where we
may now think of j ∈ {1, ..., J} as denoting time periods. We assume throughout that Xi ∈ RA×J

and Zi ∈ RJ .

To accommodate the dynamic structure of this setting, we make important restrictions on the
nesting model. First, as in the main text, we maintain the exclusion restriction that the potential out-
come function Yi(d, x, z) does not depend on the instrument Zi. Second, we assume that there are
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no carryover effects, so that for all j ≥ 1 the potential outcome function Yi,j (d, x) only depends
on the contemporaneous endogenous variable Di,j and contemporaneous included variable Xi,j .
With these two restrictions, we therefore write the potential outcome function as Yi,j (dj, xj) and
the observed outcome as Yi,j = Yi,j (Di,j, Xi,j). Third, we assume that the excluded variable Zi is
dynamically excluded from the potential endogenous variable function Di (x, z), meaning that for
each j ≥ 1, the function Di,j (x, z) only depends on the contemporaneous excluded variable Zi,j .
We therefore write the potential endogenous variable as Di,j (x, zj) and the observed endogenous
variable as Di,j = Di,j (Xi, Zi,j). The last restriction is dynamic exogeneity, and we again con-
sider two forms: dynamic unconditional exogeneity meaning (Yi,j (·) , Di,j (·)) ⊥⊥ (Xi,j, Zi,j), and
dynamic conditional exogeneity (Yi,j (·) , Di,j (·)) ⊥⊥ Zi,j | Xi,j . In this dynamic setting, we relax
exogeneity to only be a contemporaneous independence restriction within a time period j.

We assume that (Yi (·) , Di (·) , Xi, Zi) are drawn i.i.d. for units i = 1, . . . , n according to some
distribution G that lies in a class G satisfying the preceding restrictions. We further assume that the
class of distributions G summarizing the nesting model additionally satisfies the regularity condi-
tions stated in Assumption 1. Finally, as notation throughout this section, let Vi,1:j = (Vi,1, . . . , Vi,j)
denote the first j elements of any vector Vi ∈ RJ .

D.3.2 Researcher’s Dynamic Model

The researcher’s dynamic model is a special case of the dynamic nesting model. Specifically,
for each j ≥ 1, the researcher specifies that Yi,j = Y ∗ (Di,j, Xi,j, ξi,j; θ) for a function Y ∗ (·)
that is known to the researcher up to the parameter θ ∈ RP and a mean-zero structural residual
ξi,j ∈ R. We again assume that the researcher’s model is invertible, meaning there exists a function
R̃ (·; θ) that is known up to the parameter θ such that ξi,j = R̃(Yi,j, Di,j, Xi,j; θ0) for θ0 the true
value of the parameter. As shorthand, we write R∗

j (Yi, Di, Xi; θ) = R̃ (Yi,j, Di,j, Xi,j; θ) and
R∗ (Yi, Di, Xi; θ) = (R∗

1 (Yi, Di, Xi; θ) , . . . , R∗
J (Yi, Di, Xi; θ))′.

Without loss of generality, we can again take the researcher’s residual function to be additively
separable in Xi and a subset of the parameters

R̃(Yi,j, Di,j, Xi,j; θ) = R̃∗(Yi,j, Di,j, Xi,j; α) − L̃∗(Xi,j; β)

for θ = (α, β) .We can then write researcher’s residual function as

R∗(Yi, Di, Xi; θ) = R∗∗ (Yi, Di, Xi; α) − L∗∗ (Xi; β) (8)

for R∗∗
j (Yi, Di, Xi; α) = R̃∗(Yi,j, Di,j, Xi,j; α), L∗∗

j (Xi; β) = L̃∗(Xi,j; β), R∗∗ (Yi, Di, Xi; α) =
(R∗∗

1 (Yi, Di, Xi; α) , . . . , R∗∗
J (Yi, Di, Xi; α))′, and L∗∗ (Xi; β) = (L∗∗

1 (Xi; β), . . . , L∗∗
J (Xi; β)) as
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discussed in Section 3.3 of the main text. Consequently, we can again rewrite the model-implied
potential outcomes as Y ∗(Di,j, Xi,j, ξi,j; θ) = Y ∗∗(Di,j, Xi,j, ξi,j + L̃∗(Xi,j; β); α).

As an example, consider the firm production setting introduced in Section 2 of the main text, in
which the researcher assumes a Cobb-Douglas technology. In this case, the researcher’s model for
the log output of firm i in period j is a linear function of its contemporaneous, log input quantities.
More concretely, let Yi be the vector of log outputs, Di be the vector of log quantities for a static
input, and Zi be a sequence of cost shifters. The covariates Xi,j consist of state variables including
past values Yi,1:j−1 = (Yi,1, ..., Yi,j−1) of the outcome, past values Di,1:j−1 = (Di,1, ..., Di,j−1)
of the static input, and past and current values Ki,1:j = (Ki,1, ..., Ki,j) of a dynamic input. The
researcher assumes

Yi,j = β0 + αDi,j + β1Ki,j + νi,j

νi,j = β2νi,j−1 + ξi,j for j > 0,

where β0 is a constant, and νi,0 is drawn from some distribution. Here νi,j is productivity and
evolves as an AR(1) process with innovation ξi,j , where ξi,j is independent over time with E[ξi,j] =
0 for all j ≥ 1. The innovation ξi,j is realized after the dynamic input is chosen but before the
static input is chosen in period j ≥ 1, and it is therefore independent of Xi,j (but not necessarily
independent of Di,j nor Xi,j+1). As a result, E [ξi,j | Xi,j] = 0. As discussed in Ackerberg,
Caves, and Frazer (2015, Section 4.3.3; see also Blundell and Bond 1998, 2000), under standard
assumptions this model implies the period-specific residual function

R̃ (Yi,j, Di,j, Xi,j; θ) = (Yi,j − β2Yi,j−1)−β0 (1 − β2)−α (Di,j − β2Di,j−1)−β1 (Ki,j − β2Ki,j−1)

for θ = (α, β) and β = (β0, β1, β2). Such an approach may or may not make use of the excluded
cost shifters Zi.27

D.3.3 Summarizing Dynamic Causal Effects and Causally Correct Specification

In this dynamic setting with the restriction of no carryover effects, our definition of a causal sum-
mary τ extends naturally as a generalized weighted average of the partial derivatives ∂Yi,j(dj, Xi,j)/∂dj .

27In our framework, the researcher’s model may incorporate a firm-specific fixed effect denoted as β0,i. For example,
in the Cobb-Douglas example with a persistent productivity process, the period-specific residual function would
instead be given by

R̃ (Yi,j , Di,j , Xi,j ; θ) = (Yi,j − β2Yi,j−1) − β0,i (1 − β2) − α (Di,j − β2Di,j−1) − β1 (Ki,j − β2Ki,j−1) ,

where the parameter θ is now defined to additionally include the fixed effects.
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Specifically, under our stated restrictions on the nesting model, a causal summary simplifies to

τ(G) =
∑

j

EG

[
∂

∂dj

Yi,j (dj, Xi,j) dωi,j (d)
]

,

where dωi,j (·) are weights. The collection T now consists of all causal summaries with bounded
weights maxj

∫
|dωi,j (d) | ≤ W̄ for all i and some W̄ > 0. The researcher’s error for a given

causal summary τ ∈ T is again |τ ∗ (θ) − τ (G) | for its model-implied counterpart τ ∗ (θ) =∑
j EG

[
∂

∂dj
Y ∗

i,j (dj, Xi,j, ξi,j; θ) dωi,j (d)
]
.

As in the main text, we may analyze the researcher’s error by considering the behavior of an or-
acle that selects an estimator θ̃(G) under the researcher’s model based on the true data-generating
process (Yi (·) , Di (·) , Xi, Zi) ∼ G. In this dynamic setting, proximity to causally correct specifi-
cation is again a minimal requirement for the performance of the oracle. More formally, under our
stated restrictions on the nesting model, the distance from causally correct specification simplifies
to δ (G) = infθ δ (θ, G) for

δ (θ, G) =
∑

j

EG

[
sup

dj

∣∣∣∣∣∂Yi,j(dj, Xi,j)
∂dj

−
∂Y ∗

i,j (dj, Xi,j, ξi (θ) ; θ)
∂dj

∣∣∣∣∣
]

,

and causally correct specification is satisfied if and only if δ (G) = 0. Proposition 2 in the main text
immediately applies without modification since its proof does not rely on any notion of exogeneity
of the covariates Xi, Zi. In this dynamic setting, the best a researcher can hope for is again an
estimator that performs well under causally correct specification.

D.3.4 Dynamic Strong Exclusion

To construct their GMM estimator, the researcher selects some function

f ∗ (Xi, Zi) = (f ∗
1 (Xi,1, Zi,1) , . . . , f ∗

J (Xi,J , Zi,J))

and constructs a moment function of the form m̂ (θ) = 1
n

∑
i f ∗(Xi, Zi)R∗(Yi, Di, Xi; θ) as in the

main text. We continue to assume that the researcher’s resulting estimator θ̂ converges in large
samples to an estimand θ∗(G) that solves the moment equation

0 = EG [WGf ∗ (Xi, Zi) R∗ (Yi, Di, Xi; θ∗ (G))] (9)

for WG a matrix that may depend on the data-generating process G. As discussed in the main text,
we may define WG = MθΩ in the case of GMM. We now find that the behavior of the researcher’s
estimator depends on whether it satisfies a criterion that we call dynamic strong exclusion.
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Definition 12. The researcher’s estimator satisfies dynamic strong exclusion if, for all data-
generating processes G ∈ G, the estimand solves (9) and we can write

WGf ∗ (Xi, Zi) =
 W E

G f ∗ (Xi, Zi)
W I

Gf ∗ (Xi, Zi)

 ,

where EG

[
W E

G f ∗
j (Xi,j, Zi,j) | Xi,j

]
= 0 and rank

(
EG

[
W E

G f ∗ (Xi, Zi)
(
W E

G f ∗ (Xi, Zi)
)′
])

≥
dim (α) for α defined in (8).

Proposition 8. If dynamic conditional exogeneity holds, then any estimator θ̂ satisfying dynamic

strong exclusion and strong identification (Assumption 6) is approximately causally consistent un-

der Assumptions 1 and 3.

Proposition 9. Suppose Assumptions 1 and 5 hold, and the researcher’s estimator solves

EG

[
W E

G f ∗ (Xi, Zi) R∗∗ (Yi, Di, Xi; α∗(G))
]

= 0,

where EG

[
W E

G f ∗
j (Xi,j, Zi,j) | Xi,j

]
= 0, W E

G f ∗ (Xi, Zi) ∈ RLE×J , and

rank
(

EG

[
W E

G f ∗ (Xi, Zi)
(
W E

G f ∗ (Xi, Zi)
)′
])

= LE.

Then, for each v ∈ RLE , we have that τv(G) = τ ∗
v (θ∗(G)) for

τv(G) =
∑

j

EG

[∫ ∂

∂dj

Yi,j(dj, Xi,j)dωv
i,j(dj)

]

where the weights ωv
i,j(dj) are defined by

∫
hi,j(dj)dωv

i,j(dj) =
∫

Z

∫ 1

0
hi,j (Di,j (Xi,j, zj,t))

∂

∂zj

Di,j(Xi,j, zj,t)∆zjdt·ω̄v
i,j(d)dGZj |Xj

(zj|Xi,j)

for all integrable functions hi,j . Here, ∆zj = zj − zj,0, zj,t = zj,0 + t∆zj , z0,j is a fixed value, and

ω̄v
i,j(d) = R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G)) v′W E

G f ∗
j (Xi,j, z).

D.4 Proofs for Additional Theoretical Results

D.4.1 Proof of Proposition 7

To show that a causal summary is nonparametrically identified from GY DXZ , consider a distri-
bution G such that Yi ̸⊥⊥ Zi | Xi, and a differentiable, real-valued function B (·) and a distribu-
tion G such that EG [B (Yi) |Xi, Zi] differs from EG [B (Yi) |Xi] with positive probability. Define
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fE
G (Zi, Xi) = EG [B (Yi) |Xi, Zi] − EG [B (Yi) |Xi] , and note that EG

[
fE

G (Zi, Xi) |Xi

]
= 0 by

construction. Note, however, that

EG

[
fE

G (Zi, Xi) B (Yi)
]

= EG [(EG [B (Yi) |Xi, Zi] − EG [B (Yi) |Xi]) B (Yi)] =

EG

[
EG [B (Yi) |Xi, Zi]2 − EG [B (Yi) |Xi]2

]
= E [V ar (EG [B (Yi) |Xi, Zi] |Xi)] > 0.

By Lemma 4, we can write

EG

[
fE

G (Zi, Xi) B (Yi)
]

=
∑
j′

EG

[∫
T D→B

i,j′ (d, Xi) dω̃i,j′ (d)
]

for weights ω̃i,j′ (d) defined as ∫
hi (d) dω̃i,j′ (d) =

∫
Z

∫ 1

0
hi (Di (Xi, zt))

∂

∂z
Di,j′ (Xi, zt) ∆zdt · f (Xi, z) dGZ|X (z|Xi) ,

for all measurable hi (·). However, T D→B
i,j′ (d, x) = ∂

∂y
B (Yi (d, x)) ∂

∂dj′
Yi (d, x), and so if we

define the new weights ωi,j′ (·) = ∂
∂y

B (Yi (·, Xi)) ω̃i,j′ (·), we have that the causal summary∑
j′ EG

[∫
T D→B

i,j′ (d, Xi) dωi,j′ (·)
]

is identified. By construction, this causal summary is zero un-
der G ∈ G such that Yi ⊥⊥ Zi | Xi, since for such G EG [B (Yi) |Xi, Zi] − EG [B (Yi) |Xi] = 0.

To prove that no causal summary is identified from GY DX , consider any joint distribution
G for (Yi (·) , Di (·) , Xi, Zi) . Note that this implies a distribution GY DX for the non-excluded
observables. Next, define an alternative distribution G∗ such that the distribution of (Di (·) , Xi, Zi)
is the same as under G, but Yi (d, x) = Yi (d′, x) for all (d, d′, x) for all i. We are free to choose the
conditional distribution of Yi (d, x) given Di (·) for each x. To generate this distribution, for each
x let us draw from Zi|Xi = x and consider the implied distribution for Di (Zi, Xi) |Xi = x. Under
G, this then implies a joint distribution for (Yi (Di (Zi, Xi) , Xi) , Di (Zi, Xi)) |Xi = x. To generate
the distribution of Yi (d, x) under G∗, let us draw from the distribution of Di (Zi, Xi) |Xi = x, and
then draw Yi (d, x) from the conditional of Yi (Di (Zi, Xi) , Xi) |Di (Zi, Xi) , Xi = x under G. By
construction, the conditional distribution of Yi (Di, Xi) |Di, Xi under G∗ matches that under G, so
G and G∗ both imply the same distribution GY DX for (Yi, Di, Xi) . Furthermore, it follows that
any generalized weighted average of partial derivatives ∂Yi(d, Xi)/∂d identified from GY DX must
satisfy ∑

j,j′
EG∗

[∫ ∂

∂dj

Yi,j′ (d, Xi) dωi,j,j′ (d)
]

= 0.

Since this argument applies for any marginal distribution GY DX , any generalized weighted average
of partial derivatives identified from GY DX must be equal to zero for all G ∈ G, and so is not a
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non-trivial causal summary.
It remains to show that a causal summary is identified from the distribution of GY DX under

the researcher’s model provided the moment condition EG [f ∗ (Xi) R (Yi, Di, Xi; θ)] = 0 has a
unique solution under all G ∈ G∗, Towards this, notice that for any G ∈ G∗, the true value θ0 of
the unknown parameter satisfies the moment condition. Under any G ∈ G∗, we can write ξi as a
function of the potential outcomes Yi (d, x). Hence, by unconditional exogeneity, ξi ⊥⊥ (Xi, Zi)
and we can rewrite the moment condition as

EG [f ∗ (Xi) ξi] = EG [f ∗ (Xi)] EG [ξi] = 0.

It then follows that θ0 is identified. Note, however, that for θ0 known we can recover ξi as ξi =
R (Yi, Di, Xi; θ0) , and thus know the potential outcome function Yi (d, x) = Y ∗ (d, x, ξi; θ0) for
each unit. Hence, we can immediately identify for example the average local effect of changing
Di at a given value d EG

[
∂
∂d

Yi (d, Xi)
]
, which is a causal summary. 2

D.4.2 Proof of Proposition 8

The proof of this result follows the same argument as the proof of Proposition 3 with appropriate
modifications to accommodate the different nesting model and the definition of dynamic condi-
tional exogeneity. To prove the first part of the result, note that as argued in the proof of Proposi-
tion 2, under each G there exists some θ that attains δ (G). Denote this value by θ (G). Let us pick
a fixed value dj ∈ D, and define Y i,j (dj, Xi,j) as the model-implied potential outcome when we
compute the residuals at

(
dj, Xi,j

)
, so that ξ

i,j
= R̃j

(
Yi,j

(
dj, Xi,j

)
, dj, Xi,j; θ (G)

)
and

Y i,j (dj, Xi,j) = Y ∗
(
dj, Xi,j, ξ

i,j
; θ (G)

)
.

Consider the difference between Y i,j and the true potential outcome Yi,j , and note that by the
fundamental theorem of calculus

∣∣∣Yi,j (·, Xi,j) − Y i,j (·, Xi,j)
∣∣∣ =

∣∣∣∣∣
∫ 1

0

(
∂

∂dj

Yi,j

(
dj +

(
dj − dj

)
t, Xi,j

)
− ∂

∂dj

Y i,j

(
dj +

(
dj − dj

)
t, Xi,j, ξ

i,j
; θ (G)

)) (
dj − dj

)
dt

∣∣∣∣∣ ≤

δ (G)
∣∣∣dj − dj

∣∣∣ ≤ C1δ (G)

for C1 a constant that depends only on the dimension and diameter of D. Note that by construction
Y i,j (·) is a function of (Yi,j (·) , Xi,j) only, and so is independent of Zi,j conditional on Xi,j . Hence,
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for
Y i,j = Y i,j (Di, Xi) ,

and any set of dynamic mean-independent and mean-zero instruments fE
G,j (Xi, Zi) = W E

G f ∗
j (Xi,j, Zi,j),

EG

[
fE

G (Xi, Zi) R∗ (Y i, Di, Xi; θ (G))
]

=
∑

j

EG

[
W E

G f ∗
j (Xi,j, Zi,j) R̃

(
Y i,j, Di,j, Xi,j; θ (G)

)]
= 0.

Note that since we use dynamic mean-independent and mean-zero instruments the effective
moment conditions are the same whether computed using R∗ or R∗∗. From here on, the proof is
the same as that of Proposition 3. 2

D.4.3 Proof of Proposition 9

To prove this result, we first state two technical lemmas. As shorthand notation, define fE
G (Xi,Zi) =

W E
G f ∗ (Xi, Zi) and fE

G,j (Xi, Zi) = W E
G f ∗

j (Xi,j, Zi,j) .

Lemma 7. For any v ∈ RLE , j ∈ [J ], and R-valued function B∗ (xj, zj) that is differentiable in zj

for all xj , provided EG

[
v′fE

G,j (Xi, Zi) | Xi,j

]
= 0, we can write

EG

[
v′fE

G,j (Xi, Zi) B∗(Xi,j, Zi,j)
]

=

EG

[∫
Z

∫ 1

0

∂

∂zj

B∗ (Xi,j, zj,t) ∆zjdt · v′W E
G f ∗

j (Xi,j, zj) dGZj |Xj
(zj|Xi,j)

]

for ∆zj = zj − zj,0 and zj,t = zj,0 + t∆zj .

Proof of Lemma 7 The proof follows the same argument as Lemma 3.

Lemma 8. For any v ∈ RLE , j ∈ [J ], and R-valued differentiable function B̃ (Yi,j, Di,j, Xi,j),
provided EG

[
v′fE

G,j (Xi, Zi) | Xi,j

]
= 0, we can write

EG

[
v′fE

G,j (Xi, Zi) B (Yi,j, Di,j, Xi,j)
]

= EG

[∫
T Dj→B̃

i,j (dj, Xi,j) dω̃v
i,j(dj)

]
,

where

T Dj→B̃
i,j (dj, xj) = ∂

∂yj

B̃(Yi,j(dj, xj), dj, xj)
∂

∂dj

Yi,j(dj, xj) + ∂

∂dj

B̃(Yi,j(dj, xj), dj, xi)

is the total derivative of B̃ with respect to Di,j and ω̃v
i,j(dj) is defined by

∫
hi,j(dj)dω̃v

i,j(dj) =
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∫
Z

∫ 1

0
hi,j (Di,j (Xi,j, zj,t))

∂

∂zj

Di,j(Xi,j, zj,t)∆zjdt · v′W E
G f ∗

j (Xi,j, zj) dGZj |Xj
(zj|Xi,j) .

Proof of Lemma 8 The proof follows the same argument as Lemma 4.2

Lemma 9. Suppose EG

[
v′fE

G,j (Xi, Zi) | Xi,j

]
= 0. Then, for weights ω̃v

i,j as defined in Lemma 8,

Assumption 5 implies

EG

[∫
T Dj→R̃(·;θ∗(G))

i,j (dj, Xi,j) dω̃v
i,j(dj)

]
= 0.

Proof of Lemma 9 The result is immediate from Lemma 8 with

B̃ (Yi,j, Di,j, Xi,j) = R̃ (Yi,j, Di,j, Xi,j; θ∗ (G)) .

2

We are now ready to return to Proposition 9. First, recall that

T Dj→R̃(·;θ∗(G))
i,j (dj, xj) =

∂

∂yj

R̃ (Yi,j (dj, xj) , dj, xj; θ∗ (G)) ∂

∂dj

Yi,j(dj, xj) + ∂

∂dj

R̃ (Yi,j (dj, xi) , dj, xj; θ∗ (G)) .

Under the researcher’s model, R̃(Y ∗(dj, xj, ξj; θ), dj, xj; θ) = ξj for all (dj, xj, ξj, θ). Hence, by
the implicit function theorem,

∂

∂dj

Y ∗ (dj, xj, ξj; θ) = −
(

∂

∂yj

R̃ (Y ∗ (dj, xj, ξj) , dj, xj; θ)
)−1

∂

∂dj

R̃ (Yi,j, dj, xj; θ) ,

or rearranging, ∂
∂dj

R̃ (Yi,j, dj, xj; θ) = − ∂
∂yj

R (Y ∗ (dj, xj, ξj) , dj, xj; θ) ∂
∂dj

Y ∗ (dj, xj, ξj; θ) . Hence,

T Dj→R̃(·;θ∗(G))
i,j (dj, xj) =

∂
∂yj

R̃ (Yi,j (dj, xj) , dj, xj; θ∗ (G))
(

∂
∂dj

Yi,j (dj, xj) − ∂
∂dj

Y ∗
(
dj, xj, R̃ (Yi,j (dj, xj) , dj, xj; θ∗ (G)) ; θ∗ (G)

))
.

Therefore, Lemma 9 implies that for ξ̃i,j (d, θ∗ (G)) = R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G))

EG

[∫ ∂
∂yj

R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G)) ∂
∂dj

Yi,j (dj, Xi,j) dω̃v
i,j (dj)

]
=

EG

[∫ ∂
∂yj

R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G)) ∂
∂dj

Y ∗
(
dj, Xi,j, ξ̃i,j (d, θ∗ (G)) ; θ∗ (G)

)
dω̃v

i,j (dj)
]

.
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Next, observe that

EG

[
v′fE

G (Xi, Zi) R∗ (Yi, Di, Xi; θ∗(G))
]

=
∑

j

EG

[
v′fE

G,j(Xi, Zi)R̃ (Yi,j, Di,j, Xi,j; θ∗(G))
]

.

By the preceding argument, we therefore have that

∑
j EG

[∫ ∂
∂yj

R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G)) ∂
∂dj

Yi,j (dj, Xi,j) dω̃v
i,j(dj)

]
=∑

j EG

[∫ ∂
∂yj

R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G)) ∂
∂dj

Y ∗
(
dj, Xi,j, ξ̃i,j (d, θ∗ (G)) ; θ∗ (G)

)
dω̃v

i,j(dj)
]

.

The result then follows by defining ωv
i,j as

∫
hi,j(dj)dωv

i,j(dj) =

∫
Z

∫ 1

0
hi,j (Di,j (Xi,j, zj,t))

∂

∂zj

Di,j(Xi,j, zj,t)∆zjdt · ω̄v
i,j(d)dGZj |Xj

(zj|Xi,j)

for ω̄v
i,j(d) = R̃ (Yi,j (dj, Xi,j) , dj, Xi,j; θ∗ (G)) v′W E

G f ∗
j (Xi,j, z). 2

E Additional Details and Results for the Application to the Demand for Beer

E.1 Creating Simulated Datasets

We base our data and simulations on the work of MW. In this setting, an observation i ∈ N MW is
a market (region-month), the outcome Yi ∈ RJ is the vector of market shares of J different beer
products, and the endogenous variable Di ∈ RJ is the vector of prices of these products in MW’s
setting. MW specify that market shares Yi follow a random-coefficients nested logit model where
the mean utility in each market i for each product j is additively separable in product fixed effects,
month fixed effects, and a preference shock ξij . Random coefficients depend on consumer income.
MW specify that prices Di follow a Bertrand-Nash pricing model, where the marginal cost in each
market i for each product j is additively separable in product fixed effects, calendar month fixed
effects, region fixed effects, a cost shock ηi,j , an indicator for whether the product is part of a
merged entity (multiplied by a coefficient), and the product of the prevailing price of diesel fuel
and the distance of the market to the owner’s closest brewery (also multiplied by a coefficient).

Our simulated DGP uses the same specification with three modifications. First, to vary the role
of the product fixed effects, we take a weighted average of each product’s fixed effect and the aver-
age fixed effects for its brand, so that when the weight γL on the product fixed effect equals 0, the
product fixed effects collapse to brand fixed effects, and when the weight γL on the product fixed
effect equals 1, the specification coincides with MW’s. Second, to vary the role of the random co-
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efficients and nesting parameter, we multiply these by a scalar γNL ≥ 0, where when γNL = 0, the
model is a logit model and when γNL = 1, the specification coincides with MW’s.28 Finally, we
replace calendar month fixed effects with their month-of-year average,29 and we coarsen the distri-
bution of consumer income so that it differs only between high-income and low-income markets.30

This implies a potential outcome model Yi = Yi (Di,Xi) = Y SIM (Xi, Di, ξi; γ), where Y SIM (·)
is a known function, γ =

(
γL, γNL

)
encodes the design elements we vary, and Xi encodes the

set Ji of products available in market i, the seasonal month of market i, and an indicator for high-
income markets. Through the assumption of Bertrand-Nash pricing, the potential outcome model
in turn implies a potential endogenous variable model Di = Di (Xi, Zi) = DSIM (Xi, Zi, ηi; γ),
where DSIM (·) is a known function and Zi encodes the region of market i, the ownership network
of the products, the prevailing price of diesel fuel, and the distance of the market to each owner’s
closest brewery.

To create simulated datasets using a DGP satisfying exogeneity, we draw (Xi, Zi) at random
from the values observed in the MW data, and then draw (ξi, ηi) at random from the model-implied
residuals in the MW data.31 We then construct prices according to Di = DSIM (Xi, Zi, ηi; γ) and
outcomes according to Yi = Y SIM (Xi, Di, ξi; γ), so that the variables Zi affect market shares
Yi only via prices Di. To create a single simulated dataset {(Yi, Di, Xi, Zi)}n

i=1, we repeat this
procedure n = 10000 times with replacement. For each value of γ, we create 100 simulated
datasets.

E.2 Measuring Misspecification

For each value of γ, we measure the degree of misspecification of mean utility by the smallest
root mean squared difference, at the observed prices and covariates, between the true effects of the
included variables on market shares and the effects implied by the researcher’s model, i.e., by

min
θ

(100) 1
J

√√√√ 1
N dim (xj)

∑
i

∑
ℓ

∑
j,j′

(
∆xℓ,j′ Y

SIM
j (Xi, Di, ξi; γ) − ∆xℓ,j′ Y

∗
i,j (Di, Xi, ξi (θ) ; θ)

)2

28To ensure a realistic DGP, for each choice of γNL, we recalibrate the product fixed effects to match the observed
market shares, and the price coefficient to match the average own-price elasticity estimated in MW, and we estimate
new cost functions to match price responses observed in the data.

29At MW’s estimated parameters, 61.7 percent of the variance in the estimated calendar month fixed effect is accounted
for by the month of the year.

30Specifically, we assume that the distribution of the ratio of a given consumer’s income to the mean income in the
market is identical across markets, and that each market’s mean income is given either by the mean income of above-
median markets (for markets in the top half) or the mean income of below-median markets (for markets in the bottom
half). The resulting distribution of consumer income has 99.1 percent of the variance of MW’s original specification
at the consumer level, and 58.8 percent of the variance of mean income at the market level.

31If a given product j is not present in the market we sample, we draw the value of its preference and cost shock at
random from the set of all model-implied residuals across all markets in the MW data.
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where ξi (θ) = R∗
(
Y SIM

j (Xi, Di, ξi; γ) , Di, Xi; θ
)
, N indexes draws from our simulation DGP,

∆xℓ,j′ Yi,j (Di, Xi) = Yi,j (Di, Xi; xℓ,j′ = 1) − Yi,j (Di, Xi; xℓ,j′ = 0) with xℓ,j the jth row and ℓth
column of Xi in the form it enters the mean utility linearly in the true model, and dim (xj) is the
number of dimensions ℓ . We multiply by 100 to express market shares in whole percentage points.

For each value of γ, we measure a lower bound on the distance from causally correct specifi-
cation given by the smallest root mean squared difference, at the observed prices and covariates,
between the true effects of prices on market shares and those implied by the researcher’s model,
i.e., by

min
θ

(100) 1
J

√√√√√ 1
N

∑
i

∑
j,j′

(
∂

∂dj′
Y SIM

j (Xi, Di, ξi; γ) − ∂

∂dj′
Y ∗

i,j (Di, Xi, ξi (θ) ; θ)
)2

.

F Appendix Figures
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Appendix Figure 1: Causal graph of observed and unobserved variables in the researcher’s model
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Note: The figure depicts a causal graph for the setting described in Section 2. The observed variables are
(Y, D, X, Z), where X may affect (Y, D), Z may affect D, and D may affect Y . The unobserved variables
are (U1, U2), where U1 may affect (Y, D) and U2 may affect (X, Z).
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Appendix Figure 2: Bound on the error for a given causal summary

0
Distance from causally correct
specification at the estimand

Distance between
given causal summary
and closest estimable

causal summary

Zero

Small

Large

Bound on
the error

Note: The figure shows example isocurves for the bound on the error for an estimator of a given causal
summary when that estimator satisfies strong exclusion (see Section 4.3). The x-axis plots the distance from
causally correct specification at the estimand θ∗ (G). The y-axis plots the distance between a given causal
summary and the closest member of the estimable set T ∗. In the plot, lighter shades represent larger values
of the bound while darker shades represent smaller values. The bound is proportional to the product of the
two distances, so if either distance is zero, then so is the bound.
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Appendix Figure 3: Median absolute error for the average own-price elasticity, various estimators

(a) Varying the misspecification of mean utility, under causally correct specifica-
tion
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(b) Varying the distance from causally correct specification, with a misspecified
model of mean utility
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Note: The plot reports the estimated median absolute error (MAE) for different estimators of the mean own-price
elasticity. Specifications “Baseline” and “Strongly excluded” correspond to their counterparts in Panels A and B of
Figure 2; specification “Coarse residualization” corresponds to its counterpart in Panels A and B of Figure 3. In Panel
A, we maintain causally correct specification, and vary the misspecification of mean utility along the x-axis. The x-
axis displays the least possible root mean squared difference between the effect of the covariates Xi on market shares
Yi prescribed by the DGP, and those implied by the researcher’s model (see Appendix E.2). In Panel B, we maintain
a constant degree of misspecification of mean utility, but allow the distance from causally correct specification to
vary. The x-axis displays the least possible root mean squared difference between the effect of prices Di on market
shares Yi prescribed by the DGP, and those implied by the researcher’s model; this is a lower bound on the distance
from causally correct specification (see Appendix E.2). In both panels, the y-axis depicts the median absolute error
across 100 simulation replicates, along with 95 percent confidence intervals (when visible). The dashed horizontal
line reflects the median absolute error under exactly correct specification when the researcher ignores endogeneity.
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